Preskoči na glavno vsebino
Ovrednoti
Tick mark Image

Podobne težave pri spletnem iskanju

Delež

\int 270\sqrt{x}\mathrm{d}x
Najprej ovrednotite nedoločni integral.
270\int \sqrt{x}\mathrm{d}x
Faktorizirajte konstanto z integralom \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
180x^{\frac{3}{2}}
Znova zapišite \sqrt{x} kot x^{\frac{1}{2}}. Ker \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} za k\neq -1, zamenjajte \int x^{\frac{1}{2}}\mathrm{d}x s \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Poenostavite. Pomnožite 270 s/z \frac{2x^{\frac{3}{2}}}{3}.
180\times 4^{\frac{3}{2}}-180\times 1^{\frac{3}{2}}
Določen integral je integral izraza, ovrednotenega pri zgornji omejitvi integriranja, minus integral, ovrednoten pri spodnji omejitvi integriranja.
1260
Poenostavite.