Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Odvajajte w.r.t. x
Tick mark Image

Podobne težave pri spletnem iskanju

Delež

\int x^{3}\mathrm{d}x+\int -2x^{2}\mathrm{d}x+\int \frac{1}{x^{\frac{2}{3}}}\mathrm{d}x
Vsoto povežite z izrazom.
\int x^{3}\mathrm{d}x-2\int x^{2}\mathrm{d}x+\int \frac{1}{x^{\frac{2}{3}}}\mathrm{d}x
Faktorizirajte konstanto v vseh izrazih.
\frac{x^{4}}{4}-2\int x^{2}\mathrm{d}x+\int \frac{1}{x^{\frac{2}{3}}}\mathrm{d}x
Ker \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} za k\neq -1, zamenjajte \int x^{3}\mathrm{d}x s \frac{x^{4}}{4}.
\frac{x^{4}}{4}-\frac{2x^{3}}{3}+\int \frac{1}{x^{\frac{2}{3}}}\mathrm{d}x
Ker \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} za k\neq -1, zamenjajte \int x^{2}\mathrm{d}x s \frac{x^{3}}{3}. Pomnožite -2 s/z \frac{x^{3}}{3}.
\frac{x^{4}}{4}-\frac{2x^{3}}{3}+3\sqrt[3]{x}
Znova zapišite \frac{1}{x^{\frac{2}{3}}} kot x^{-\frac{2}{3}}. Ker \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} za k\neq -1, zamenjajte \int x^{-\frac{2}{3}}\mathrm{d}x s \frac{x^{\frac{1}{3}}}{\frac{1}{3}}. Poenostavite in pretvorite iz eksponentne oblike v koren.
\frac{x^{4}}{4}-\frac{2x^{3}}{3}+3\sqrt[3]{x}+С
Če je F\left(x\right) integral člena f\left(x\right), je množica vseh integralov f\left(x\right) izračunana glede na F\left(x\right)+C. Zato k rezultatu prištejte konstanto integracije C\in \mathrm{R}.