Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Razširi
Tick mark Image
Graf

Podobne težave pri spletnem iskanju

Delež

\frac{x\left(x^{2}+9\right)}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{2}{x^{2}-6x+9}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik x-3 in x^{2}+9 je \left(x-3\right)\left(x^{2}+9\right). Pomnožite \frac{x}{x-3} s/z \frac{x^{2}+9}{x^{2}+9}. Pomnožite \frac{x+1}{x^{2}+9} s/z \frac{x-3}{x-3}.
\frac{x\left(x^{2}+9\right)+\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{2}{x^{2}-6x+9}
\frac{x\left(x^{2}+9\right)}{\left(x-3\right)\left(x^{2}+9\right)} in \frac{\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x^{2}+9\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{x^{3}+9x+x^{2}-3x+x-3}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{2}{x^{2}-6x+9}
Izvedi množenje v x\left(x^{2}+9\right)+\left(x+1\right)\left(x-3\right).
\frac{x^{3}+7x+x^{2}-3}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{2}{x^{2}-6x+9}
Združite podobne člene v x^{3}+9x+x^{2}-3x+x-3.
\frac{x^{3}+7x+x^{2}-3}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{2}{\left(x-3\right)^{2}}
Faktorizirajte x^{2}-6x+9.
\frac{\left(x^{3}+7x+x^{2}-3\right)\left(x-3\right)}{\left(x-3\right)^{2}\left(x^{2}+9\right)}+\frac{2\left(x^{2}+9\right)}{\left(x-3\right)^{2}\left(x^{2}+9\right)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik \left(x-3\right)\left(x^{2}+9\right) in \left(x-3\right)^{2} je \left(x-3\right)^{2}\left(x^{2}+9\right). Pomnožite \frac{x^{3}+7x+x^{2}-3}{\left(x-3\right)\left(x^{2}+9\right)} s/z \frac{x-3}{x-3}. Pomnožite \frac{2}{\left(x-3\right)^{2}} s/z \frac{x^{2}+9}{x^{2}+9}.
\frac{\left(x^{3}+7x+x^{2}-3\right)\left(x-3\right)+2\left(x^{2}+9\right)}{\left(x-3\right)^{2}\left(x^{2}+9\right)}
\frac{\left(x^{3}+7x+x^{2}-3\right)\left(x-3\right)}{\left(x-3\right)^{2}\left(x^{2}+9\right)} in \frac{2\left(x^{2}+9\right)}{\left(x-3\right)^{2}\left(x^{2}+9\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{x^{4}-3x^{3}+7x^{2}-21x+x^{3}-3x^{2}-3x+9+2x^{2}+18}{\left(x-3\right)^{2}\left(x^{2}+9\right)}
Izvedi množenje v \left(x^{3}+7x+x^{2}-3\right)\left(x-3\right)+2\left(x^{2}+9\right).
\frac{x^{4}-2x^{3}+6x^{2}-24x+27}{\left(x-3\right)^{2}\left(x^{2}+9\right)}
Združite podobne člene v x^{4}-3x^{3}+7x^{2}-21x+x^{3}-3x^{2}-3x+9+2x^{2}+18.
\frac{x^{4}-2x^{3}+6x^{2}-24x+27}{x^{4}-6x^{3}+18x^{2}-54x+81}
Razčlenite \left(x-3\right)^{2}\left(x^{2}+9\right).
\frac{x\left(x^{2}+9\right)}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{2}{x^{2}-6x+9}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik x-3 in x^{2}+9 je \left(x-3\right)\left(x^{2}+9\right). Pomnožite \frac{x}{x-3} s/z \frac{x^{2}+9}{x^{2}+9}. Pomnožite \frac{x+1}{x^{2}+9} s/z \frac{x-3}{x-3}.
\frac{x\left(x^{2}+9\right)+\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{2}{x^{2}-6x+9}
\frac{x\left(x^{2}+9\right)}{\left(x-3\right)\left(x^{2}+9\right)} in \frac{\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x^{2}+9\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{x^{3}+9x+x^{2}-3x+x-3}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{2}{x^{2}-6x+9}
Izvedi množenje v x\left(x^{2}+9\right)+\left(x+1\right)\left(x-3\right).
\frac{x^{3}+7x+x^{2}-3}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{2}{x^{2}-6x+9}
Združite podobne člene v x^{3}+9x+x^{2}-3x+x-3.
\frac{x^{3}+7x+x^{2}-3}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{2}{\left(x-3\right)^{2}}
Faktorizirajte x^{2}-6x+9.
\frac{\left(x^{3}+7x+x^{2}-3\right)\left(x-3\right)}{\left(x-3\right)^{2}\left(x^{2}+9\right)}+\frac{2\left(x^{2}+9\right)}{\left(x-3\right)^{2}\left(x^{2}+9\right)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik \left(x-3\right)\left(x^{2}+9\right) in \left(x-3\right)^{2} je \left(x-3\right)^{2}\left(x^{2}+9\right). Pomnožite \frac{x^{3}+7x+x^{2}-3}{\left(x-3\right)\left(x^{2}+9\right)} s/z \frac{x-3}{x-3}. Pomnožite \frac{2}{\left(x-3\right)^{2}} s/z \frac{x^{2}+9}{x^{2}+9}.
\frac{\left(x^{3}+7x+x^{2}-3\right)\left(x-3\right)+2\left(x^{2}+9\right)}{\left(x-3\right)^{2}\left(x^{2}+9\right)}
\frac{\left(x^{3}+7x+x^{2}-3\right)\left(x-3\right)}{\left(x-3\right)^{2}\left(x^{2}+9\right)} in \frac{2\left(x^{2}+9\right)}{\left(x-3\right)^{2}\left(x^{2}+9\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{x^{4}-3x^{3}+7x^{2}-21x+x^{3}-3x^{2}-3x+9+2x^{2}+18}{\left(x-3\right)^{2}\left(x^{2}+9\right)}
Izvedi množenje v \left(x^{3}+7x+x^{2}-3\right)\left(x-3\right)+2\left(x^{2}+9\right).
\frac{x^{4}-2x^{3}+6x^{2}-24x+27}{\left(x-3\right)^{2}\left(x^{2}+9\right)}
Združite podobne člene v x^{4}-3x^{3}+7x^{2}-21x+x^{3}-3x^{2}-3x+9+2x^{2}+18.
\frac{x^{4}-2x^{3}+6x^{2}-24x+27}{x^{4}-6x^{3}+18x^{2}-54x+81}
Razčlenite \left(x-3\right)^{2}\left(x^{2}+9\right).