Ovrednoti
-2x+\frac{7}{2}+\frac{3}{2x}
Razširi
-2x+\frac{7}{2}+\frac{3}{2x}
Graf
Delež
Kopirano v odložišče
\frac{6\left(x+1\right)}{4x}-6+8+x\left(-2\right)
Faktorizirajte izraze, ki še niso faktorizirani v \frac{6x+6}{4x}.
\frac{3\left(x+1\right)}{2x}-6+8+x\left(-2\right)
Okrajšaj 2 v števcu in imenovalcu.
\frac{3\left(x+1\right)}{2x}+2+x\left(-2\right)
Seštejte -6 in 8, da dobite 2.
\frac{3\left(x+1\right)}{2x}+\frac{\left(2+x\left(-2\right)\right)\times 2x}{2x}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Pomnožite 2+x\left(-2\right) s/z \frac{2x}{2x}.
\frac{3\left(x+1\right)+\left(2+x\left(-2\right)\right)\times 2x}{2x}
\frac{3\left(x+1\right)}{2x} in \frac{\left(2+x\left(-2\right)\right)\times 2x}{2x} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{3x+3+4x-4x^{2}}{2x}
Izvedi množenje v 3\left(x+1\right)+\left(2+x\left(-2\right)\right)\times 2x.
\frac{7x+3-4x^{2}}{2x}
Združite podobne člene v 3x+3+4x-4x^{2}.
\frac{-4\left(x-\left(-\frac{1}{8}\sqrt{97}+\frac{7}{8}\right)\right)\left(x-\left(\frac{1}{8}\sqrt{97}+\frac{7}{8}\right)\right)}{2x}
Faktorizirajte izraze, ki še niso faktorizirani v \frac{7x+3-4x^{2}}{2x}.
\frac{-2\left(x-\left(-\frac{1}{8}\sqrt{97}+\frac{7}{8}\right)\right)\left(x-\left(\frac{1}{8}\sqrt{97}+\frac{7}{8}\right)\right)}{x}
Okrajšaj 2 v števcu in imenovalcu.
\frac{-2\left(x-\left(-\frac{1}{8}\sqrt{97}\right)-\frac{7}{8}\right)\left(x-\left(\frac{1}{8}\sqrt{97}+\frac{7}{8}\right)\right)}{x}
Če želite poiskati nasprotno vrednost za -\frac{1}{8}\sqrt{97}+\frac{7}{8}, poiščite nasprotno vrednost vsakega izraza.
\frac{-2\left(x+\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)\left(x-\left(\frac{1}{8}\sqrt{97}+\frac{7}{8}\right)\right)}{x}
Nasprotna vrednost -\frac{1}{8}\sqrt{97} je \frac{1}{8}\sqrt{97}.
\frac{-2\left(x+\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)\left(x-\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)}{x}
Če želite poiskati nasprotno vrednost za \frac{1}{8}\sqrt{97}+\frac{7}{8}, poiščite nasprotno vrednost vsakega izraza.
\frac{\left(-2x-2\times \frac{1}{8}\sqrt{97}-2\left(-\frac{7}{8}\right)\right)\left(x-\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)}{x}
Uporabite distributivnost, da pomnožite -2 s/z x+\frac{1}{8}\sqrt{97}-\frac{7}{8}.
\frac{\left(-2x+\frac{-2}{8}\sqrt{97}-2\left(-\frac{7}{8}\right)\right)\left(x-\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)}{x}
Pomnožite -2 in \frac{1}{8}, da dobite \frac{-2}{8}.
\frac{\left(-2x-\frac{1}{4}\sqrt{97}-2\left(-\frac{7}{8}\right)\right)\left(x-\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)}{x}
Zmanjšajte ulomek \frac{-2}{8} na najmanjši imenovalec tako, da izpeljete in okrajšate 2.
\frac{\left(-2x-\frac{1}{4}\sqrt{97}+\frac{-2\left(-7\right)}{8}\right)\left(x-\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)}{x}
Izrazite -2\left(-\frac{7}{8}\right) kot enojni ulomek.
\frac{\left(-2x-\frac{1}{4}\sqrt{97}+\frac{14}{8}\right)\left(x-\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)}{x}
Pomnožite -2 in -7, da dobite 14.
\frac{\left(-2x-\frac{1}{4}\sqrt{97}+\frac{7}{4}\right)\left(x-\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)}{x}
Zmanjšajte ulomek \frac{14}{8} na najmanjši imenovalec tako, da izpeljete in okrajšate 2.
\frac{-2x^{2}-2x\left(-\frac{1}{8}\right)\sqrt{97}-2x\left(-\frac{7}{8}\right)-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\sqrt{97}\left(-\frac{1}{8}\right)\sqrt{97}-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Uporabite distributivnost tako, da pomnožite vsako vrednost -2x-\frac{1}{4}\sqrt{97}+\frac{7}{4} z vsako vrednostjo x-\frac{1}{8}\sqrt{97}-\frac{7}{8}.
\frac{-2x^{2}-2x\left(-\frac{1}{8}\right)\sqrt{97}-2x\left(-\frac{7}{8}\right)-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Pomnožite \sqrt{97} in \sqrt{97}, da dobite 97.
\frac{-2x^{2}+\frac{-2\left(-1\right)}{8}x\sqrt{97}-2x\left(-\frac{7}{8}\right)-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Izrazite -2\left(-\frac{1}{8}\right) kot enojni ulomek.
\frac{-2x^{2}+\frac{2}{8}x\sqrt{97}-2x\left(-\frac{7}{8}\right)-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Pomnožite -2 in -1, da dobite 2.
\frac{-2x^{2}+\frac{1}{4}x\sqrt{97}-2x\left(-\frac{7}{8}\right)-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Zmanjšajte ulomek \frac{2}{8} na najmanjši imenovalec tako, da izpeljete in okrajšate 2.
\frac{-2x^{2}+\frac{1}{4}x\sqrt{97}+\frac{-2\left(-7\right)}{8}x-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Izrazite -2\left(-\frac{7}{8}\right) kot enojni ulomek.
\frac{-2x^{2}+\frac{1}{4}x\sqrt{97}+\frac{14}{8}x-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Pomnožite -2 in -7, da dobite 14.
\frac{-2x^{2}+\frac{1}{4}x\sqrt{97}+\frac{7}{4}x-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Zmanjšajte ulomek \frac{14}{8} na najmanjši imenovalec tako, da izpeljete in okrajšate 2.
\frac{-2x^{2}+\frac{7}{4}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Združite \frac{1}{4}x\sqrt{97} in -\frac{1}{4}\sqrt{97}x, da dobite 0.
\frac{-2x^{2}+\frac{7}{4}x+\frac{-97}{4}\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Izrazite -\frac{1}{4}\times 97 kot enojni ulomek.
\frac{-2x^{2}+\frac{7}{4}x-\frac{97}{4}\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Ulomek \frac{-97}{4} je mogoče drugače zapisati kot -\frac{97}{4} z ekstrahiranjem negativnega znaka.
\frac{-2x^{2}+\frac{7}{4}x+\frac{-97\left(-1\right)}{4\times 8}-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Pomnožite -\frac{97}{4} s/z -\frac{1}{8} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{-2x^{2}+\frac{7}{4}x+\frac{97}{32}-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Izvedite množenja v ulomku \frac{-97\left(-1\right)}{4\times 8}.
\frac{-2x^{2}+\frac{7}{4}x+\frac{97}{32}+\frac{-\left(-7\right)}{4\times 8}\sqrt{97}+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Pomnožite -\frac{1}{4} s/z -\frac{7}{8} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{-2x^{2}+\frac{7}{4}x+\frac{97}{32}+\frac{7}{32}\sqrt{97}+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Izvedite množenja v ulomku \frac{-\left(-7\right)}{4\times 8}.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}+\frac{7}{32}\sqrt{97}+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Združite \frac{7}{4}x in \frac{7}{4}x, da dobite \frac{7}{2}x.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}+\frac{7}{32}\sqrt{97}+\frac{7\left(-1\right)}{4\times 8}\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Pomnožite \frac{7}{4} s/z -\frac{1}{8} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}+\frac{7}{32}\sqrt{97}+\frac{-7}{32}\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Izvedite množenja v ulomku \frac{7\left(-1\right)}{4\times 8}.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}+\frac{7}{32}\sqrt{97}-\frac{7}{32}\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Ulomek \frac{-7}{32} je mogoče drugače zapisati kot -\frac{7}{32} z ekstrahiranjem negativnega znaka.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Združite \frac{7}{32}\sqrt{97} in -\frac{7}{32}\sqrt{97}, da dobite 0.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}+\frac{7\left(-7\right)}{4\times 8}}{x}
Pomnožite \frac{7}{4} s/z -\frac{7}{8} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}+\frac{-49}{32}}{x}
Izvedite množenja v ulomku \frac{7\left(-7\right)}{4\times 8}.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}-\frac{49}{32}}{x}
Ulomek \frac{-49}{32} je mogoče drugače zapisati kot -\frac{49}{32} z ekstrahiranjem negativnega znaka.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97-49}{32}}{x}
Ker \frac{97}{32} in \frac{49}{32} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{-2x^{2}+\frac{7}{2}x+\frac{48}{32}}{x}
Odštejte 49 od 97, da dobite 48.
\frac{-2x^{2}+\frac{7}{2}x+\frac{3}{2}}{x}
Zmanjšajte ulomek \frac{48}{32} na najmanjši imenovalec tako, da izpeljete in okrajšate 16.
\frac{6\left(x+1\right)}{4x}-6+8+x\left(-2\right)
Faktorizirajte izraze, ki še niso faktorizirani v \frac{6x+6}{4x}.
\frac{3\left(x+1\right)}{2x}-6+8+x\left(-2\right)
Okrajšaj 2 v števcu in imenovalcu.
\frac{3\left(x+1\right)}{2x}+2+x\left(-2\right)
Seštejte -6 in 8, da dobite 2.
\frac{3\left(x+1\right)}{2x}+\frac{\left(2+x\left(-2\right)\right)\times 2x}{2x}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Pomnožite 2+x\left(-2\right) s/z \frac{2x}{2x}.
\frac{3\left(x+1\right)+\left(2+x\left(-2\right)\right)\times 2x}{2x}
\frac{3\left(x+1\right)}{2x} in \frac{\left(2+x\left(-2\right)\right)\times 2x}{2x} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{3x+3+4x-4x^{2}}{2x}
Izvedi množenje v 3\left(x+1\right)+\left(2+x\left(-2\right)\right)\times 2x.
\frac{7x+3-4x^{2}}{2x}
Združite podobne člene v 3x+3+4x-4x^{2}.
\frac{-4\left(x-\left(-\frac{1}{8}\sqrt{97}+\frac{7}{8}\right)\right)\left(x-\left(\frac{1}{8}\sqrt{97}+\frac{7}{8}\right)\right)}{2x}
Faktorizirajte izraze, ki še niso faktorizirani v \frac{7x+3-4x^{2}}{2x}.
\frac{-2\left(x-\left(-\frac{1}{8}\sqrt{97}+\frac{7}{8}\right)\right)\left(x-\left(\frac{1}{8}\sqrt{97}+\frac{7}{8}\right)\right)}{x}
Okrajšaj 2 v števcu in imenovalcu.
\frac{-2\left(x-\left(-\frac{1}{8}\sqrt{97}\right)-\frac{7}{8}\right)\left(x-\left(\frac{1}{8}\sqrt{97}+\frac{7}{8}\right)\right)}{x}
Če želite poiskati nasprotno vrednost za -\frac{1}{8}\sqrt{97}+\frac{7}{8}, poiščite nasprotno vrednost vsakega izraza.
\frac{-2\left(x+\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)\left(x-\left(\frac{1}{8}\sqrt{97}+\frac{7}{8}\right)\right)}{x}
Nasprotna vrednost -\frac{1}{8}\sqrt{97} je \frac{1}{8}\sqrt{97}.
\frac{-2\left(x+\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)\left(x-\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)}{x}
Če želite poiskati nasprotno vrednost za \frac{1}{8}\sqrt{97}+\frac{7}{8}, poiščite nasprotno vrednost vsakega izraza.
\frac{\left(-2x-2\times \frac{1}{8}\sqrt{97}-2\left(-\frac{7}{8}\right)\right)\left(x-\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)}{x}
Uporabite distributivnost, da pomnožite -2 s/z x+\frac{1}{8}\sqrt{97}-\frac{7}{8}.
\frac{\left(-2x+\frac{-2}{8}\sqrt{97}-2\left(-\frac{7}{8}\right)\right)\left(x-\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)}{x}
Pomnožite -2 in \frac{1}{8}, da dobite \frac{-2}{8}.
\frac{\left(-2x-\frac{1}{4}\sqrt{97}-2\left(-\frac{7}{8}\right)\right)\left(x-\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)}{x}
Zmanjšajte ulomek \frac{-2}{8} na najmanjši imenovalec tako, da izpeljete in okrajšate 2.
\frac{\left(-2x-\frac{1}{4}\sqrt{97}+\frac{-2\left(-7\right)}{8}\right)\left(x-\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)}{x}
Izrazite -2\left(-\frac{7}{8}\right) kot enojni ulomek.
\frac{\left(-2x-\frac{1}{4}\sqrt{97}+\frac{14}{8}\right)\left(x-\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)}{x}
Pomnožite -2 in -7, da dobite 14.
\frac{\left(-2x-\frac{1}{4}\sqrt{97}+\frac{7}{4}\right)\left(x-\frac{1}{8}\sqrt{97}-\frac{7}{8}\right)}{x}
Zmanjšajte ulomek \frac{14}{8} na najmanjši imenovalec tako, da izpeljete in okrajšate 2.
\frac{-2x^{2}-2x\left(-\frac{1}{8}\right)\sqrt{97}-2x\left(-\frac{7}{8}\right)-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\sqrt{97}\left(-\frac{1}{8}\right)\sqrt{97}-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Uporabite distributivnost tako, da pomnožite vsako vrednost -2x-\frac{1}{4}\sqrt{97}+\frac{7}{4} z vsako vrednostjo x-\frac{1}{8}\sqrt{97}-\frac{7}{8}.
\frac{-2x^{2}-2x\left(-\frac{1}{8}\right)\sqrt{97}-2x\left(-\frac{7}{8}\right)-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Pomnožite \sqrt{97} in \sqrt{97}, da dobite 97.
\frac{-2x^{2}+\frac{-2\left(-1\right)}{8}x\sqrt{97}-2x\left(-\frac{7}{8}\right)-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Izrazite -2\left(-\frac{1}{8}\right) kot enojni ulomek.
\frac{-2x^{2}+\frac{2}{8}x\sqrt{97}-2x\left(-\frac{7}{8}\right)-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Pomnožite -2 in -1, da dobite 2.
\frac{-2x^{2}+\frac{1}{4}x\sqrt{97}-2x\left(-\frac{7}{8}\right)-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Zmanjšajte ulomek \frac{2}{8} na najmanjši imenovalec tako, da izpeljete in okrajšate 2.
\frac{-2x^{2}+\frac{1}{4}x\sqrt{97}+\frac{-2\left(-7\right)}{8}x-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Izrazite -2\left(-\frac{7}{8}\right) kot enojni ulomek.
\frac{-2x^{2}+\frac{1}{4}x\sqrt{97}+\frac{14}{8}x-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Pomnožite -2 in -7, da dobite 14.
\frac{-2x^{2}+\frac{1}{4}x\sqrt{97}+\frac{7}{4}x-\frac{1}{4}\sqrt{97}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Zmanjšajte ulomek \frac{14}{8} na najmanjši imenovalec tako, da izpeljete in okrajšate 2.
\frac{-2x^{2}+\frac{7}{4}x-\frac{1}{4}\times 97\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Združite \frac{1}{4}x\sqrt{97} in -\frac{1}{4}\sqrt{97}x, da dobite 0.
\frac{-2x^{2}+\frac{7}{4}x+\frac{-97}{4}\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Izrazite -\frac{1}{4}\times 97 kot enojni ulomek.
\frac{-2x^{2}+\frac{7}{4}x-\frac{97}{4}\left(-\frac{1}{8}\right)-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Ulomek \frac{-97}{4} je mogoče drugače zapisati kot -\frac{97}{4} z ekstrahiranjem negativnega znaka.
\frac{-2x^{2}+\frac{7}{4}x+\frac{-97\left(-1\right)}{4\times 8}-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Pomnožite -\frac{97}{4} s/z -\frac{1}{8} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{-2x^{2}+\frac{7}{4}x+\frac{97}{32}-\frac{1}{4}\sqrt{97}\left(-\frac{7}{8}\right)+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Izvedite množenja v ulomku \frac{-97\left(-1\right)}{4\times 8}.
\frac{-2x^{2}+\frac{7}{4}x+\frac{97}{32}+\frac{-\left(-7\right)}{4\times 8}\sqrt{97}+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Pomnožite -\frac{1}{4} s/z -\frac{7}{8} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{-2x^{2}+\frac{7}{4}x+\frac{97}{32}+\frac{7}{32}\sqrt{97}+\frac{7}{4}x+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Izvedite množenja v ulomku \frac{-\left(-7\right)}{4\times 8}.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}+\frac{7}{32}\sqrt{97}+\frac{7}{4}\left(-\frac{1}{8}\right)\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Združite \frac{7}{4}x in \frac{7}{4}x, da dobite \frac{7}{2}x.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}+\frac{7}{32}\sqrt{97}+\frac{7\left(-1\right)}{4\times 8}\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Pomnožite \frac{7}{4} s/z -\frac{1}{8} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}+\frac{7}{32}\sqrt{97}+\frac{-7}{32}\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Izvedite množenja v ulomku \frac{7\left(-1\right)}{4\times 8}.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}+\frac{7}{32}\sqrt{97}-\frac{7}{32}\sqrt{97}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Ulomek \frac{-7}{32} je mogoče drugače zapisati kot -\frac{7}{32} z ekstrahiranjem negativnega znaka.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}+\frac{7}{4}\left(-\frac{7}{8}\right)}{x}
Združite \frac{7}{32}\sqrt{97} in -\frac{7}{32}\sqrt{97}, da dobite 0.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}+\frac{7\left(-7\right)}{4\times 8}}{x}
Pomnožite \frac{7}{4} s/z -\frac{7}{8} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}+\frac{-49}{32}}{x}
Izvedite množenja v ulomku \frac{7\left(-7\right)}{4\times 8}.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97}{32}-\frac{49}{32}}{x}
Ulomek \frac{-49}{32} je mogoče drugače zapisati kot -\frac{49}{32} z ekstrahiranjem negativnega znaka.
\frac{-2x^{2}+\frac{7}{2}x+\frac{97-49}{32}}{x}
Ker \frac{97}{32} in \frac{49}{32} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{-2x^{2}+\frac{7}{2}x+\frac{48}{32}}{x}
Odštejte 49 od 97, da dobite 48.
\frac{-2x^{2}+\frac{7}{2}x+\frac{3}{2}}{x}
Zmanjšajte ulomek \frac{48}{32} na najmanjši imenovalec tako, da izpeljete in okrajšate 16.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}