Preskoči na glavno vsebino
Ovrednoti
Tick mark Image

Delež

\frac{5 {(\sin^{2}(30))} + {(\cos^{2}(45))} - 4 {(\tan^{2}(30))}}{2 \cdot 1,1547005383792515 + \tan(45)}
Evaluate trigonometric functions in the problem
\frac{5\times \left(\frac{1}{2}\right)^{2}+\left(\cos(45)\right)^{2}-4\left(\tan(30)\right)^{2}}{2\times 1,1547005383792515+\tan(45)}
Pridobite vrednost \sin(30) iz tabele trigonometričnih vrednosti.
\frac{5\times \frac{1}{4}+\left(\cos(45)\right)^{2}-4\left(\tan(30)\right)^{2}}{2\times 1,1547005383792515+\tan(45)}
Izračunajte potenco \frac{1}{2} števila 2, da dobite \frac{1}{4}.
\frac{\frac{5}{4}+\left(\cos(45)\right)^{2}-4\left(\tan(30)\right)^{2}}{2\times 1,1547005383792515+\tan(45)}
Pomnožite 5 in \frac{1}{4}, da dobite \frac{5}{4}.
\frac{\frac{5}{4}+\left(\frac{\sqrt{2}}{2}\right)^{2}-4\left(\tan(30)\right)^{2}}{2\times 1,1547005383792515+\tan(45)}
Pridobite vrednost \cos(45) iz tabele trigonometričnih vrednosti.
\frac{\frac{5}{4}+\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-4\left(\tan(30)\right)^{2}}{2\times 1,1547005383792515+\tan(45)}
Če želite dobiti potenco vrednosti \frac{\sqrt{2}}{2}, potencirajte števec in imenovalec, nato pa delite.
\frac{\frac{5}{4}+\frac{\left(\sqrt{2}\right)^{2}}{4}-4\left(\tan(30)\right)^{2}}{2\times 1,1547005383792515+\tan(45)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Razčlenite 2^{2}.
\frac{\frac{5+\left(\sqrt{2}\right)^{2}}{4}-4\left(\tan(30)\right)^{2}}{2\times 1,1547005383792515+\tan(45)}
\frac{5}{4} in \frac{\left(\sqrt{2}\right)^{2}}{4} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{\frac{5+\left(\sqrt{2}\right)^{2}}{4}-4\times \left(\frac{\sqrt{3}}{3}\right)^{2}}{2\times 1,1547005383792515+\tan(45)}
Pridobite vrednost \tan(30) iz tabele trigonometričnih vrednosti.
\frac{\frac{5+\left(\sqrt{2}\right)^{2}}{4}-4\times \frac{\left(\sqrt{3}\right)^{2}}{3^{2}}}{2\times 1,1547005383792515+\tan(45)}
Če želite dobiti potenco vrednosti \frac{\sqrt{3}}{3}, potencirajte števec in imenovalec, nato pa delite.
\frac{\frac{5+\left(\sqrt{2}\right)^{2}}{4}-\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}}{2\times 1,1547005383792515+\tan(45)}
Izrazite 4\times \frac{\left(\sqrt{3}\right)^{2}}{3^{2}} kot enojni ulomek.
\frac{\frac{5+\left(\sqrt{2}\right)^{2}}{4}-\frac{4\times 3}{3^{2}}}{2\times 1,1547005383792515+\tan(45)}
Kvadrat vrednosti \sqrt{3} je 3.
\frac{\frac{5+\left(\sqrt{2}\right)^{2}}{4}-\frac{12}{3^{2}}}{2\times 1,1547005383792515+\tan(45)}
Pomnožite 4 in 3, da dobite 12.
\frac{\frac{5+\left(\sqrt{2}\right)^{2}}{4}-\frac{12}{9}}{2\times 1,1547005383792515+\tan(45)}
Izračunajte potenco 3 števila 2, da dobite 9.
\frac{\frac{5+\left(\sqrt{2}\right)^{2}}{4}-\frac{4}{3}}{2\times 1,1547005383792515+\tan(45)}
Zmanjšajte ulomek \frac{12}{9} na najmanjši imenovalec tako, da izpeljete in okrajšate 3.
\frac{\frac{3\left(5+\left(\sqrt{2}\right)^{2}\right)}{12}-\frac{4\times 4}{12}}{2\times 1,1547005383792515+\tan(45)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik 4 in 3 je 12. Pomnožite \frac{5+\left(\sqrt{2}\right)^{2}}{4} s/z \frac{3}{3}. Pomnožite \frac{4}{3} s/z \frac{4}{4}.
\frac{\frac{3\left(5+\left(\sqrt{2}\right)^{2}\right)-4\times 4}{12}}{2\times 1,1547005383792515+\tan(45)}
Ker \frac{3\left(5+\left(\sqrt{2}\right)^{2}\right)}{12} in \frac{4\times 4}{12} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{\frac{3\left(5+\left(\sqrt{2}\right)^{2}\right)-4\times 4}{12}}{2,309401076758503+\tan(45)}
Pomnožite 2 in 1,1547005383792515, da dobite 2,309401076758503.
\frac{\frac{3\left(5+\left(\sqrt{2}\right)^{2}\right)-4\times 4}{12}}{2,309401076758503+1}
Pridobite vrednost \tan(45) iz tabele trigonometričnih vrednosti.
\frac{\frac{3\left(5+\left(\sqrt{2}\right)^{2}\right)-4\times 4}{12}}{3,309401076758503}
Seštejte 2,309401076758503 in 1, da dobite 3,309401076758503.
\frac{3\left(5+\left(\sqrt{2}\right)^{2}\right)-4\times 4}{12\times 3,309401076758503}
Izrazite \frac{\frac{3\left(5+\left(\sqrt{2}\right)^{2}\right)-4\times 4}{12}}{3,309401076758503} kot enojni ulomek.
\frac{3\left(5+2\right)-4\times 4}{12\times 3,309401076758503}
Kvadrat vrednosti \sqrt{2} je 2.
\frac{3\times 7-4\times 4}{12\times 3,309401076758503}
Seštejte 5 in 2, da dobite 7.
\frac{21-4\times 4}{12\times 3,309401076758503}
Pomnožite 3 in 7, da dobite 21.
\frac{21-16}{12\times 3,309401076758503}
Pomnožite -4 in 4, da dobite -16.
\frac{5}{12\times 3,309401076758503}
Odštejte 16 od 21, da dobite 5.
\frac{5}{39,712812921102036}
Pomnožite 12 in 3,309401076758503, da dobite 39,712812921102036.
\frac{5000000000000000}{39712812921102036}
Razširite \frac{5}{39,712812921102036} tako, da pomnožite števec in imenovalec s številom 1000000000000000.
\frac{1250000000000000}{9928203230275509}
Zmanjšajte ulomek \frac{5000000000000000}{39712812921102036} na najmanjši imenovalec tako, da izpeljete in okrajšate 4.