Preskoči na glavno vsebino
Rešitev za x
Tick mark Image
Graf

Podobne težave pri spletnem iskanju

Delež

3+\left(x-2\right)\times 2=\left(x-2\right)\left(x+2\right)
Spremenljivka x ne more biti enaka nobeni od vrednosti -2,2, ker deljenje z vrednostjo nič ni določeno. Pomnožite obe strani enačbe z \left(x-2\right)\left(x+2\right), najmanjšim skupnim mnogokratnikom števila x^{2}-4,x+2.
3+2x-4=\left(x-2\right)\left(x+2\right)
Uporabite distributivnost, da pomnožite x-2 s/z 2.
-1+2x=\left(x-2\right)\left(x+2\right)
Odštejte 4 od 3, da dobite -1.
-1+2x=x^{2}-4
Razmislite o \left(x-2\right)\left(x+2\right). Množenje je lahko preoblikovano v razliko kvadratov s pravilom: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Kvadrat števila 2.
-1+2x-x^{2}=-4
Odštejte x^{2} na obeh straneh.
-1+2x-x^{2}+4=0
Dodajte 4 na obe strani.
3+2x-x^{2}=0
Seštejte -1 in 4, da dobite 3.
-x^{2}+2x+3=0
Prerazporedite polinom tako, da jo pretvorite v standardno obliko. Premaknite člene v vrstnem redu od najvišje do najnižje potence.
a+b=2 ab=-3=-3
Če želite rešiti enačbo, faktor levo roko po združiti. Najprej, na levi strani mora biti uporabnika kot -x^{2}+ax+bx+3. Če želite poiskati a in b, nastavite sistem tako, da bo rešena.
a=3 b=-1
Ker je ab negativen, a in b imajo nenegativno vrednost. Ker je a+b pozitivno, je pozitivno število večje absolutno vrednosti kot negativno. Edini tak par je sistemska rešitev.
\left(-x^{2}+3x\right)+\left(-x+3\right)
Znova zapišite -x^{2}+2x+3 kot \left(-x^{2}+3x\right)+\left(-x+3\right).
-x\left(x-3\right)-\left(x-3\right)
Faktor -x v prvem in -1 v drugi skupini.
\left(x-3\right)\left(-x-1\right)
Faktor skupnega člena x-3 z uporabo lastnosti distributivnosti.
x=3 x=-1
Če želite poiskati rešitve za enačbe, rešite x-3=0 in -x-1=0.
3+\left(x-2\right)\times 2=\left(x-2\right)\left(x+2\right)
Spremenljivka x ne more biti enaka nobeni od vrednosti -2,2, ker deljenje z vrednostjo nič ni določeno. Pomnožite obe strani enačbe z \left(x-2\right)\left(x+2\right), najmanjšim skupnim mnogokratnikom števila x^{2}-4,x+2.
3+2x-4=\left(x-2\right)\left(x+2\right)
Uporabite distributivnost, da pomnožite x-2 s/z 2.
-1+2x=\left(x-2\right)\left(x+2\right)
Odštejte 4 od 3, da dobite -1.
-1+2x=x^{2}-4
Razmislite o \left(x-2\right)\left(x+2\right). Množenje je lahko preoblikovano v razliko kvadratov s pravilom: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Kvadrat števila 2.
-1+2x-x^{2}=-4
Odštejte x^{2} na obeh straneh.
-1+2x-x^{2}+4=0
Dodajte 4 na obe strani.
3+2x-x^{2}=0
Seštejte -1 in 4, da dobite 3.
-x^{2}+2x+3=0
Vse enačbe v obliki ax^{2}+bx+c=0 lahko rešite s formulo za reševanje kvadratnih enačb: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula za reševanje kvadratnih enačb ponudi dve rešitvi: eno, če je ± seštevanje, in drugo, če je odštevanje.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
Ta enačba je v standardni obliki: ax^{2}+bx+c=0. Vstavite -1 za a, 2 za b in 3 za c v formulo za reševanje kvadratnih enačb \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
Kvadrat števila 2.
x=\frac{-2±\sqrt{4+4\times 3}}{2\left(-1\right)}
Pomnožite -4 s/z -1.
x=\frac{-2±\sqrt{4+12}}{2\left(-1\right)}
Pomnožite 4 s/z 3.
x=\frac{-2±\sqrt{16}}{2\left(-1\right)}
Seštejte 4 in 12.
x=\frac{-2±4}{2\left(-1\right)}
Uporabite kvadratni koren števila 16.
x=\frac{-2±4}{-2}
Pomnožite 2 s/z -1.
x=\frac{2}{-2}
Zdaj rešite enačbo x=\frac{-2±4}{-2}, ko je ± plus. Seštejte -2 in 4.
x=-1
Delite 2 s/z -2.
x=-\frac{6}{-2}
Zdaj rešite enačbo x=\frac{-2±4}{-2}, ko je ± minus. Odštejte 4 od -2.
x=3
Delite -6 s/z -2.
x=-1 x=3
Enačba je zdaj rešena.
3+\left(x-2\right)\times 2=\left(x-2\right)\left(x+2\right)
Spremenljivka x ne more biti enaka nobeni od vrednosti -2,2, ker deljenje z vrednostjo nič ni določeno. Pomnožite obe strani enačbe z \left(x-2\right)\left(x+2\right), najmanjšim skupnim mnogokratnikom števila x^{2}-4,x+2.
3+2x-4=\left(x-2\right)\left(x+2\right)
Uporabite distributivnost, da pomnožite x-2 s/z 2.
-1+2x=\left(x-2\right)\left(x+2\right)
Odštejte 4 od 3, da dobite -1.
-1+2x=x^{2}-4
Razmislite o \left(x-2\right)\left(x+2\right). Množenje je lahko preoblikovano v razliko kvadratov s pravilom: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Kvadrat števila 2.
-1+2x-x^{2}=-4
Odštejte x^{2} na obeh straneh.
2x-x^{2}=-4+1
Dodajte 1 na obe strani.
2x-x^{2}=-3
Seštejte -4 in 1, da dobite -3.
-x^{2}+2x=-3
Kvadratne enačbe, kot je ta, lahko rešite z dopolnjevanjem do popolnega kvadrata. Za dopolnjevanje do popolnega kvadrata morate enačbo najprej pretvoriti v obliko x^{2}+bx=c.
\frac{-x^{2}+2x}{-1}=-\frac{3}{-1}
Delite obe strani z vrednostjo -1.
x^{2}+\frac{2}{-1}x=-\frac{3}{-1}
Z deljenjem s/z -1 razveljavite množenje s/z -1.
x^{2}-2x=-\frac{3}{-1}
Delite 2 s/z -1.
x^{2}-2x=3
Delite -3 s/z -1.
x^{2}-2x+1=3+1
Delite -2, ki je koeficient člena x, z 2, da dobite -1. Nato dodajte kvadrat števila -1 na obe strani enačbe. S tem korakom boste levo stran enačbe pretvorili v popolni kvadrat.
x^{2}-2x+1=4
Seštejte 3 in 1.
\left(x-1\right)^{2}=4
Faktorizirajte x^{2}-2x+1. Če je x^{2}+bx+c kvadrat, ga lahko vedno faktorizirate kot \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Uporabite kvadratni koren obeh strani enačbe.
x-1=2 x-1=-2
Poenostavite.
x=3 x=-1
Prištejte 1 na obe strani enačbe.