Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Odvajajte w.r.t. x
Tick mark Image
Graf

Podobne težave pri spletnem iskanju

Delež

\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)}-\frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik x+2 in x-3 je \left(x-3\right)\left(x+2\right). Pomnožite \frac{2}{x+2} s/z \frac{x-3}{x-3}. Pomnožite \frac{7}{x-3} s/z \frac{x+2}{x+2}.
\frac{2\left(x-3\right)-7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}
Ker \frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)} in \frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{2x-6-7x-14}{\left(x-3\right)\left(x+2\right)}
Izvedi množenje v 2\left(x-3\right)-7\left(x+2\right).
\frac{-5x-20}{\left(x-3\right)\left(x+2\right)}
Združite podobne člene v 2x-6-7x-14.
\frac{-5x-20}{x^{2}-x-6}
Razčlenite \left(x-3\right)\left(x+2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)}-\frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)})
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik x+2 in x-3 je \left(x-3\right)\left(x+2\right). Pomnožite \frac{2}{x+2} s/z \frac{x-3}{x-3}. Pomnožite \frac{7}{x-3} s/z \frac{x+2}{x+2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x-3\right)-7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)})
Ker \frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)} in \frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-6-7x-14}{\left(x-3\right)\left(x+2\right)})
Izvedi množenje v 2\left(x-3\right)-7\left(x+2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x-20}{\left(x-3\right)\left(x+2\right)})
Združite podobne člene v 2x-6-7x-14.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x-20}{x^{2}+2x-3x-6})
Uporabite distributivnost tako, da pomnožite vsako vrednost x-3 z vsako vrednostjo x+2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x-20}{x^{2}-x-6})
Združite 2x in -3x, da dobite -x.
\frac{\left(x^{2}-x^{1}-6\right)\frac{\mathrm{d}}{\mathrm{d}x}(-5x^{1}-20)-\left(-5x^{1}-20\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1}-6)}{\left(x^{2}-x^{1}-6\right)^{2}}
Za kateri koli dve odvedljivi funkciji je odvod kvocienta dveh funkcij imenovalec krat odvod števca minus števec krat odvod imenovalca, vse skupaj pa je deljeno s kvadratom imenovalca.
\frac{\left(x^{2}-x^{1}-6\right)\left(-5\right)x^{1-1}-\left(-5x^{1}-20\right)\left(2x^{2-1}-x^{1-1}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
Odvod polinoma je vsota odvodov njegovih členov. Odvod katerega koli prostega člena je 0. Odvod člena ax^{n} je nax^{n-1}.
\frac{\left(x^{2}-x^{1}-6\right)\left(-5\right)x^{0}-\left(-5x^{1}-20\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
Poenostavite.
\frac{x^{2}\left(-5\right)x^{0}-x^{1}\left(-5\right)x^{0}-6\left(-5\right)x^{0}-\left(-5x^{1}-20\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
Pomnožite x^{2}-x^{1}-6 s/z -5x^{0}.
\frac{x^{2}\left(-5\right)x^{0}-x^{1}\left(-5\right)x^{0}-6\left(-5\right)x^{0}-\left(-5x^{1}\times 2x^{1}-5x^{1}\left(-1\right)x^{0}-20\times 2x^{1}-20\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
Pomnožite -5x^{1}-20 s/z 2x^{1}-x^{0}.
\frac{-5x^{2}-\left(-5x^{1}\right)-6\left(-5\right)x^{0}-\left(-5\times 2x^{1+1}-5\left(-1\right)x^{1}-20\times 2x^{1}-20\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
Če želite množiti potence iste osnove, seštejte njihove eksponente.
\frac{-5x^{2}+5x^{1}+30x^{0}-\left(-10x^{2}+5x^{1}-40x^{1}+20x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
Poenostavite.
\frac{5x^{2}+40x^{1}+10x^{0}}{\left(x^{2}-x^{1}-6\right)^{2}}
Združite podobne člene.
\frac{5x^{2}+40x+10x^{0}}{\left(x^{2}-x-6\right)^{2}}
Za kakršen koli izraz t, t^{1}=t.
\frac{5x^{2}+40x+10\times 1}{\left(x^{2}-x-6\right)^{2}}
Za kakršen koli izraz t, razen 0, t^{0}=1.
\frac{5x^{2}+40x+10}{\left(x^{2}-x-6\right)^{2}}
Za kakršen koli izraz t, t\times 1=t in 1t=t.