Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Razširi
Tick mark Image
Graf

Podobne težave pri spletnem iskanju

Delež

\left(\frac{1}{12}x+\frac{1}{12}\times 4\right)\left(x+1\right)\left(x-1\right)\left(x-3\right)
Uporabite distributivnost, da pomnožite \frac{1}{12} s/z x+4.
\left(\frac{1}{12}x+\frac{4}{12}\right)\left(x+1\right)\left(x-1\right)\left(x-3\right)
Pomnožite \frac{1}{12} in 4, da dobite \frac{4}{12}.
\left(\frac{1}{12}x+\frac{1}{3}\right)\left(x+1\right)\left(x-1\right)\left(x-3\right)
Zmanjšajte ulomek \frac{4}{12} na najmanjši imenovalec tako, da izpeljete in okrajšate 4.
\left(\frac{1}{12}xx+\frac{1}{12}x+\frac{1}{3}x+\frac{1}{3}\right)\left(x-1\right)\left(x-3\right)
Uporabite distributivnost tako, da pomnožite vsako vrednost \frac{1}{12}x+\frac{1}{3} z vsako vrednostjo x+1.
\left(\frac{1}{12}x^{2}+\frac{1}{12}x+\frac{1}{3}x+\frac{1}{3}\right)\left(x-1\right)\left(x-3\right)
Pomnožite x in x, da dobite x^{2}.
\left(\frac{1}{12}x^{2}+\frac{5}{12}x+\frac{1}{3}\right)\left(x-1\right)\left(x-3\right)
Združite \frac{1}{12}x in \frac{1}{3}x, da dobite \frac{5}{12}x.
\left(\frac{1}{12}x^{2}x+\frac{1}{12}x^{2}\left(-1\right)+\frac{5}{12}xx+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Uporabite distributivnost tako, da pomnožite vsako vrednost \frac{1}{12}x^{2}+\frac{5}{12}x+\frac{1}{3} z vsako vrednostjo x-1.
\left(\frac{1}{12}x^{3}+\frac{1}{12}x^{2}\left(-1\right)+\frac{5}{12}xx+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Če želite pomnožiti potence z isto osnovo, seštejte njihove eksponente. Seštejte 2 in 1, da dobite 3.
\left(\frac{1}{12}x^{3}+\frac{1}{12}x^{2}\left(-1\right)+\frac{5}{12}x^{2}+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Pomnožite x in x, da dobite x^{2}.
\left(\frac{1}{12}x^{3}-\frac{1}{12}x^{2}+\frac{5}{12}x^{2}+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Pomnožite \frac{1}{12} in -1, da dobite -\frac{1}{12}.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Združite -\frac{1}{12}x^{2} in \frac{5}{12}x^{2}, da dobite \frac{1}{3}x^{2}.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{5}{12}x+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Pomnožite \frac{5}{12} in -1, da dobite -\frac{5}{12}.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{1}{12}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Združite -\frac{5}{12}x in \frac{1}{3}x, da dobite -\frac{1}{12}x.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{1}{12}x-\frac{1}{3}\right)\left(x-3\right)
Pomnožite \frac{1}{3} in -1, da dobite -\frac{1}{3}.
\frac{1}{12}x^{3}x+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{2}x+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}xx-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Uporabite distributivnost tako, da pomnožite vsako vrednost \frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{1}{12}x-\frac{1}{3} z vsako vrednostjo x-3.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{2}x+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}xx-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Če želite pomnožiti potence z isto osnovo, seštejte njihove eksponente. Seštejte 3 in 1, da dobite 4.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}xx-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Če želite pomnožiti potence z isto osnovo, seštejte njihove eksponente. Seštejte 2 in 1, da dobite 3.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Pomnožite x in x, da dobite x^{2}.
\frac{1}{12}x^{4}+\frac{-3}{12}x^{3}+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Pomnožite \frac{1}{12} in -3, da dobite \frac{-3}{12}.
\frac{1}{12}x^{4}-\frac{1}{4}x^{3}+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Zmanjšajte ulomek \frac{-3}{12} na najmanjši imenovalec tako, da izpeljete in okrajšate 3.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Združite -\frac{1}{4}x^{3} in \frac{1}{3}x^{3}, da dobite \frac{1}{12}x^{3}.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}+\frac{-3}{3}x^{2}-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Pomnožite \frac{1}{3} in -3, da dobite \frac{-3}{3}.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-x^{2}-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Delite -3 s/z 3, da dobite -1.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Združite -x^{2} in -\frac{1}{12}x^{2}, da dobite -\frac{13}{12}x^{2}.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}+\frac{-\left(-3\right)}{12}x-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Izrazite -\frac{1}{12}\left(-3\right) kot enojni ulomek.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}+\frac{3}{12}x-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Pomnožite -1 in -3, da dobite 3.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}+\frac{1}{4}x-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Zmanjšajte ulomek \frac{3}{12} na najmanjši imenovalec tako, da izpeljete in okrajšate 3.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x-\frac{1}{3}\left(-3\right)
Združite \frac{1}{4}x in -\frac{1}{3}x, da dobite -\frac{1}{12}x.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x+\frac{-\left(-3\right)}{3}
Izrazite -\frac{1}{3}\left(-3\right) kot enojni ulomek.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x+\frac{3}{3}
Pomnožite -1 in -3, da dobite 3.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x+1
Delite 3 s/z 3, da dobite 1.
\left(\frac{1}{12}x+\frac{1}{12}\times 4\right)\left(x+1\right)\left(x-1\right)\left(x-3\right)
Uporabite distributivnost, da pomnožite \frac{1}{12} s/z x+4.
\left(\frac{1}{12}x+\frac{4}{12}\right)\left(x+1\right)\left(x-1\right)\left(x-3\right)
Pomnožite \frac{1}{12} in 4, da dobite \frac{4}{12}.
\left(\frac{1}{12}x+\frac{1}{3}\right)\left(x+1\right)\left(x-1\right)\left(x-3\right)
Zmanjšajte ulomek \frac{4}{12} na najmanjši imenovalec tako, da izpeljete in okrajšate 4.
\left(\frac{1}{12}xx+\frac{1}{12}x+\frac{1}{3}x+\frac{1}{3}\right)\left(x-1\right)\left(x-3\right)
Uporabite distributivnost tako, da pomnožite vsako vrednost \frac{1}{12}x+\frac{1}{3} z vsako vrednostjo x+1.
\left(\frac{1}{12}x^{2}+\frac{1}{12}x+\frac{1}{3}x+\frac{1}{3}\right)\left(x-1\right)\left(x-3\right)
Pomnožite x in x, da dobite x^{2}.
\left(\frac{1}{12}x^{2}+\frac{5}{12}x+\frac{1}{3}\right)\left(x-1\right)\left(x-3\right)
Združite \frac{1}{12}x in \frac{1}{3}x, da dobite \frac{5}{12}x.
\left(\frac{1}{12}x^{2}x+\frac{1}{12}x^{2}\left(-1\right)+\frac{5}{12}xx+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Uporabite distributivnost tako, da pomnožite vsako vrednost \frac{1}{12}x^{2}+\frac{5}{12}x+\frac{1}{3} z vsako vrednostjo x-1.
\left(\frac{1}{12}x^{3}+\frac{1}{12}x^{2}\left(-1\right)+\frac{5}{12}xx+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Če želite pomnožiti potence z isto osnovo, seštejte njihove eksponente. Seštejte 2 in 1, da dobite 3.
\left(\frac{1}{12}x^{3}+\frac{1}{12}x^{2}\left(-1\right)+\frac{5}{12}x^{2}+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Pomnožite x in x, da dobite x^{2}.
\left(\frac{1}{12}x^{3}-\frac{1}{12}x^{2}+\frac{5}{12}x^{2}+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Pomnožite \frac{1}{12} in -1, da dobite -\frac{1}{12}.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Združite -\frac{1}{12}x^{2} in \frac{5}{12}x^{2}, da dobite \frac{1}{3}x^{2}.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{5}{12}x+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Pomnožite \frac{5}{12} in -1, da dobite -\frac{5}{12}.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{1}{12}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Združite -\frac{5}{12}x in \frac{1}{3}x, da dobite -\frac{1}{12}x.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{1}{12}x-\frac{1}{3}\right)\left(x-3\right)
Pomnožite \frac{1}{3} in -1, da dobite -\frac{1}{3}.
\frac{1}{12}x^{3}x+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{2}x+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}xx-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Uporabite distributivnost tako, da pomnožite vsako vrednost \frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{1}{12}x-\frac{1}{3} z vsako vrednostjo x-3.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{2}x+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}xx-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Če želite pomnožiti potence z isto osnovo, seštejte njihove eksponente. Seštejte 3 in 1, da dobite 4.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}xx-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Če želite pomnožiti potence z isto osnovo, seštejte njihove eksponente. Seštejte 2 in 1, da dobite 3.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Pomnožite x in x, da dobite x^{2}.
\frac{1}{12}x^{4}+\frac{-3}{12}x^{3}+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Pomnožite \frac{1}{12} in -3, da dobite \frac{-3}{12}.
\frac{1}{12}x^{4}-\frac{1}{4}x^{3}+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Zmanjšajte ulomek \frac{-3}{12} na najmanjši imenovalec tako, da izpeljete in okrajšate 3.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Združite -\frac{1}{4}x^{3} in \frac{1}{3}x^{3}, da dobite \frac{1}{12}x^{3}.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}+\frac{-3}{3}x^{2}-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Pomnožite \frac{1}{3} in -3, da dobite \frac{-3}{3}.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-x^{2}-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Delite -3 s/z 3, da dobite -1.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Združite -x^{2} in -\frac{1}{12}x^{2}, da dobite -\frac{13}{12}x^{2}.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}+\frac{-\left(-3\right)}{12}x-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Izrazite -\frac{1}{12}\left(-3\right) kot enojni ulomek.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}+\frac{3}{12}x-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Pomnožite -1 in -3, da dobite 3.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}+\frac{1}{4}x-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Zmanjšajte ulomek \frac{3}{12} na najmanjši imenovalec tako, da izpeljete in okrajšate 3.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x-\frac{1}{3}\left(-3\right)
Združite \frac{1}{4}x in -\frac{1}{3}x, da dobite -\frac{1}{12}x.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x+\frac{-\left(-3\right)}{3}
Izrazite -\frac{1}{3}\left(-3\right) kot enojni ulomek.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x+\frac{3}{3}
Pomnožite -1 in -3, da dobite 3.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x+1
Delite 3 s/z 3, da dobite 1.