Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Razširi
Tick mark Image
Graf

Podobne težave pri spletnem iskanju

Delež

\frac{\frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)}-\frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik x+3 in x+4 je \left(x+3\right)\left(x+4\right). Pomnožite \frac{x+4}{x+3} s/z \frac{x+4}{x+4}. Pomnožite \frac{x-3}{x+4} s/z \frac{x+3}{x+3}.
\frac{\frac{\left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Ker \frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)} in \frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{\frac{x^{2}+4x+4x+16-x^{2}-3x+3x+9}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Izvedi množenje v \left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right).
\frac{\frac{8x+25}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Združite podobne člene v x^{2}+4x+4x+16-x^{2}-3x+3x+9.
\frac{\left(8x+25\right)\left(x^{2}+7x+12\right)}{\left(x+3\right)\left(x+4\right)\times 14}
Delite \frac{8x+25}{\left(x+3\right)\left(x+4\right)} s/z \frac{14}{x^{2}+7x+12} tako, da pomnožite \frac{8x+25}{\left(x+3\right)\left(x+4\right)} z obratno vrednostjo \frac{14}{x^{2}+7x+12}.
\frac{\left(x+3\right)\left(x+4\right)\left(8x+25\right)}{14\left(x+3\right)\left(x+4\right)}
Faktorizirajte izraze, ki še niso faktorizirani.
\frac{8x+25}{14}
Okrajšaj \left(x+3\right)\left(x+4\right) v števcu in imenovalcu.
\frac{\frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)}-\frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik x+3 in x+4 je \left(x+3\right)\left(x+4\right). Pomnožite \frac{x+4}{x+3} s/z \frac{x+4}{x+4}. Pomnožite \frac{x-3}{x+4} s/z \frac{x+3}{x+3}.
\frac{\frac{\left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Ker \frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)} in \frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{\frac{x^{2}+4x+4x+16-x^{2}-3x+3x+9}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Izvedi množenje v \left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right).
\frac{\frac{8x+25}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Združite podobne člene v x^{2}+4x+4x+16-x^{2}-3x+3x+9.
\frac{\left(8x+25\right)\left(x^{2}+7x+12\right)}{\left(x+3\right)\left(x+4\right)\times 14}
Delite \frac{8x+25}{\left(x+3\right)\left(x+4\right)} s/z \frac{14}{x^{2}+7x+12} tako, da pomnožite \frac{8x+25}{\left(x+3\right)\left(x+4\right)} z obratno vrednostjo \frac{14}{x^{2}+7x+12}.
\frac{\left(x+3\right)\left(x+4\right)\left(8x+25\right)}{14\left(x+3\right)\left(x+4\right)}
Faktorizirajte izraze, ki še niso faktorizirani.
\frac{8x+25}{14}
Okrajšaj \left(x+3\right)\left(x+4\right) v števcu in imenovalcu.