Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Faktoriziraj
Tick mark Image

Delež

\frac{\frac{\frac{6}{3}+\frac{1}{3}}{7}+\frac{1-\frac{1}{4}}{3}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{\frac{1}{4}}{\frac{3}{5}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Pretvorite 2 v ulomek \frac{6}{3}.
\frac{\frac{\frac{6+1}{3}}{7}+\frac{1-\frac{1}{4}}{3}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{\frac{1}{4}}{\frac{3}{5}}}\left(\frac{2}{7}+\frac{4}{19}\right)
\frac{6}{3} in \frac{1}{3} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{\frac{\frac{7}{3}}{7}+\frac{1-\frac{1}{4}}{3}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{\frac{1}{4}}{\frac{3}{5}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Seštejte 6 in 1, da dobite 7.
\frac{\frac{7}{3\times 7}+\frac{1-\frac{1}{4}}{3}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{\frac{1}{4}}{\frac{3}{5}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Izrazite \frac{\frac{7}{3}}{7} kot enojni ulomek.
\frac{\frac{1}{3}+\frac{1-\frac{1}{4}}{3}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{\frac{1}{4}}{\frac{3}{5}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Okrajšaj 7 v števcu in imenovalcu.
\frac{\frac{1}{3}+\frac{\frac{4}{4}-\frac{1}{4}}{3}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{\frac{1}{4}}{\frac{3}{5}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Pretvorite 1 v ulomek \frac{4}{4}.
\frac{\frac{1}{3}+\frac{\frac{4-1}{4}}{3}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{\frac{1}{4}}{\frac{3}{5}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Ker \frac{4}{4} in \frac{1}{4} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{\frac{1}{3}+\frac{\frac{3}{4}}{3}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{\frac{1}{4}}{\frac{3}{5}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Odštejte 1 od 4, da dobite 3.
\frac{\frac{1}{3}+\frac{3}{4\times 3}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{\frac{1}{4}}{\frac{3}{5}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Izrazite \frac{\frac{3}{4}}{3} kot enojni ulomek.
\frac{\frac{1}{3}+\frac{1}{4}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{\frac{1}{4}}{\frac{3}{5}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Okrajšaj 3 v števcu in imenovalcu.
\frac{\frac{4}{12}+\frac{3}{12}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{\frac{1}{4}}{\frac{3}{5}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Najmanjši skupni mnogokratnik 3 in 4 je 12. Pretvorite \frac{1}{3} in \frac{1}{4} v ulomke z imenovalcem 12.
\frac{\frac{4+3}{12}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{\frac{1}{4}}{\frac{3}{5}}}\left(\frac{2}{7}+\frac{4}{19}\right)
\frac{4}{12} in \frac{3}{12} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{\frac{7}{12}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{\frac{1}{4}}{\frac{3}{5}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Seštejte 4 in 3, da dobite 7.
\frac{\frac{7}{12}}{\frac{1}{2}\times 4-\frac{\frac{1}{4}}{\frac{3}{5}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Delite \frac{1}{2} s/z \frac{1}{4} tako, da pomnožite \frac{1}{2} z obratno vrednostjo \frac{1}{4}.
\frac{\frac{7}{12}}{\frac{4}{2}-\frac{\frac{1}{4}}{\frac{3}{5}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Pomnožite \frac{1}{2} in 4, da dobite \frac{4}{2}.
\frac{\frac{7}{12}}{2-\frac{\frac{1}{4}}{\frac{3}{5}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Delite 4 s/z 2, da dobite 2.
\frac{\frac{7}{12}}{2-\frac{1}{4}\times \frac{5}{3}}\left(\frac{2}{7}+\frac{4}{19}\right)
Delite \frac{1}{4} s/z \frac{3}{5} tako, da pomnožite \frac{1}{4} z obratno vrednostjo \frac{3}{5}.
\frac{\frac{7}{12}}{2-\frac{1\times 5}{4\times 3}}\left(\frac{2}{7}+\frac{4}{19}\right)
Pomnožite \frac{1}{4} s/z \frac{5}{3} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{\frac{7}{12}}{2-\frac{5}{12}}\left(\frac{2}{7}+\frac{4}{19}\right)
Izvedite množenja v ulomku \frac{1\times 5}{4\times 3}.
\frac{\frac{7}{12}}{\frac{24}{12}-\frac{5}{12}}\left(\frac{2}{7}+\frac{4}{19}\right)
Pretvorite 2 v ulomek \frac{24}{12}.
\frac{\frac{7}{12}}{\frac{24-5}{12}}\left(\frac{2}{7}+\frac{4}{19}\right)
Ker \frac{24}{12} in \frac{5}{12} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{\frac{7}{12}}{\frac{19}{12}}\left(\frac{2}{7}+\frac{4}{19}\right)
Odštejte 5 od 24, da dobite 19.
\frac{7}{12}\times \frac{12}{19}\left(\frac{2}{7}+\frac{4}{19}\right)
Delite \frac{7}{12} s/z \frac{19}{12} tako, da pomnožite \frac{7}{12} z obratno vrednostjo \frac{19}{12}.
\frac{7\times 12}{12\times 19}\left(\frac{2}{7}+\frac{4}{19}\right)
Pomnožite \frac{7}{12} s/z \frac{12}{19} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{7}{19}\left(\frac{2}{7}+\frac{4}{19}\right)
Okrajšaj 12 v števcu in imenovalcu.
\frac{7}{19}\left(\frac{38}{133}+\frac{28}{133}\right)
Najmanjši skupni mnogokratnik 7 in 19 je 133. Pretvorite \frac{2}{7} in \frac{4}{19} v ulomke z imenovalcem 133.
\frac{7}{19}\times \frac{38+28}{133}
\frac{38}{133} in \frac{28}{133} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{7}{19}\times \frac{66}{133}
Seštejte 38 in 28, da dobite 66.
\frac{7\times 66}{19\times 133}
Pomnožite \frac{7}{19} s/z \frac{66}{133} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{462}{2527}
Izvedite množenja v ulomku \frac{7\times 66}{19\times 133}.
\frac{66}{361}
Zmanjšajte ulomek \frac{462}{2527} na najmanjši imenovalec tako, da izpeljete in okrajšate 7.