Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Faktoriziraj
Tick mark Image
Graf

Podobne težave pri spletnem iskanju

Delež

\frac{x-1}{\left(x+1\right)\left(x+2\right)}+\frac{6}{\left(x-2\right)\left(-x-1\right)}-\frac{10-x}{4-x^{2}}
Faktorizirajte x^{2}+3x+2. Faktorizirajte 2+x-x^{2}.
\frac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}+\frac{6\left(-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{10-x}{4-x^{2}}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik \left(x+1\right)\left(x+2\right) in \left(x-2\right)\left(-x-1\right) je \left(x-2\right)\left(x+1\right)\left(x+2\right). Pomnožite \frac{x-1}{\left(x+1\right)\left(x+2\right)} s/z \frac{x-2}{x-2}. Pomnožite \frac{6}{\left(x-2\right)\left(-x-1\right)} s/z \frac{-\left(x+2\right)}{-\left(x+2\right)}.
\frac{\left(x-1\right)\left(x-2\right)+6\left(-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{10-x}{4-x^{2}}
\frac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} in \frac{6\left(-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{x^{2}-2x-x+2-6x-12}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{10-x}{4-x^{2}}
Izvedi množenje v \left(x-1\right)\left(x-2\right)+6\left(-1\right)\left(x+2\right).
\frac{x^{2}-9x-10}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{10-x}{4-x^{2}}
Združite podobne člene v x^{2}-2x-x+2-6x-12.
\frac{\left(x-10\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{10-x}{4-x^{2}}
Faktorizirajte izraze, ki še niso faktorizirani v \frac{x^{2}-9x-10}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}.
\frac{x-10}{\left(x-2\right)\left(x+2\right)}-\frac{10-x}{4-x^{2}}
Okrajšaj x+1 v števcu in imenovalcu.
\frac{x-10}{\left(x-2\right)\left(x+2\right)}-\frac{10-x}{\left(x-2\right)\left(-x-2\right)}
Faktorizirajte 4-x^{2}.
\frac{x-10}{\left(x-2\right)\left(x+2\right)}-\frac{-\left(10-x\right)}{\left(x-2\right)\left(x+2\right)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik \left(x-2\right)\left(x+2\right) in \left(x-2\right)\left(-x-2\right) je \left(x-2\right)\left(x+2\right). Pomnožite \frac{10-x}{\left(x-2\right)\left(-x-2\right)} s/z \frac{-1}{-1}.
\frac{x-10-\left(-\left(10-x\right)\right)}{\left(x-2\right)\left(x+2\right)}
Ker \frac{x-10}{\left(x-2\right)\left(x+2\right)} in \frac{-\left(10-x\right)}{\left(x-2\right)\left(x+2\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{x-10+10-x}{\left(x-2\right)\left(x+2\right)}
Izvedi množenje v x-10-\left(-\left(10-x\right)\right).
\frac{0}{\left(x-2\right)\left(x+2\right)}
Združite podobne člene v x-10+10-x.
0
Vrednost nič, deljena s poljubno vrednostjo, ki ni nič, da vrednost nič.