Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Odvajajte w.r.t. x
Tick mark Image
Graf

Podobne težave pri spletnem iskanju

Delež

\frac{x}{\left(x+4\right)\left(x+6\right)}-\frac{4}{\left(x+2\right)\left(x+4\right)}
Faktorizirajte x^{2}+10x+24. Faktorizirajte x^{2}+6x+8.
\frac{x\left(x+2\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}-\frac{4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik \left(x+4\right)\left(x+6\right) in \left(x+2\right)\left(x+4\right) je \left(x+2\right)\left(x+4\right)\left(x+6\right). Pomnožite \frac{x}{\left(x+4\right)\left(x+6\right)} s/z \frac{x+2}{x+2}. Pomnožite \frac{4}{\left(x+2\right)\left(x+4\right)} s/z \frac{x+6}{x+6}.
\frac{x\left(x+2\right)-4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}
Ker \frac{x\left(x+2\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)} in \frac{4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{x^{2}+2x-4x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}
Izvedi množenje v x\left(x+2\right)-4\left(x+6\right).
\frac{x^{2}-2x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}
Združite podobne člene v x^{2}+2x-4x-24.
\frac{\left(x-6\right)\left(x+4\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}
Faktorizirajte izraze, ki še niso faktorizirani v \frac{x^{2}-2x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}.
\frac{x-6}{\left(x+2\right)\left(x+6\right)}
Okrajšaj x+4 v števcu in imenovalcu.
\frac{x-6}{x^{2}+8x+12}
Razčlenite \left(x+2\right)\left(x+6\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{\left(x+4\right)\left(x+6\right)}-\frac{4}{\left(x+2\right)\left(x+4\right)})
Faktorizirajte x^{2}+10x+24. Faktorizirajte x^{2}+6x+8.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x+2\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}-\frac{4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)})
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik \left(x+4\right)\left(x+6\right) in \left(x+2\right)\left(x+4\right) je \left(x+2\right)\left(x+4\right)\left(x+6\right). Pomnožite \frac{x}{\left(x+4\right)\left(x+6\right)} s/z \frac{x+2}{x+2}. Pomnožite \frac{4}{\left(x+2\right)\left(x+4\right)} s/z \frac{x+6}{x+6}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x+2\right)-4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)})
Ker \frac{x\left(x+2\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)} in \frac{4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}+2x-4x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)})
Izvedi množenje v x\left(x+2\right)-4\left(x+6\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}-2x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)})
Združite podobne člene v x^{2}+2x-4x-24.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x-6\right)\left(x+4\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)})
Faktorizirajte izraze, ki še niso faktorizirani v \frac{x^{2}-2x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-6}{\left(x+2\right)\left(x+6\right)})
Okrajšaj x+4 v števcu in imenovalcu.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-6}{x^{2}+8x+12})
Uporabite lastnost distributivnosti za množenje x+2 krat x+6 in kombiniranje pogojev podobnosti.
\frac{\left(x^{2}+8x^{1}+12\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-6)-\left(x^{1}-6\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+8x^{1}+12)}{\left(x^{2}+8x^{1}+12\right)^{2}}
Za kateri koli dve odvedljivi funkciji je odvod kvocienta dveh funkcij imenovalec krat odvod števca minus števec krat odvod imenovalca, vse skupaj pa je deljeno s kvadratom imenovalca.
\frac{\left(x^{2}+8x^{1}+12\right)x^{1-1}-\left(x^{1}-6\right)\left(2x^{2-1}+8x^{1-1}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
Odvod polinoma je vsota odvodov njegovih členov. Odvod katerega koli prostega člena je 0. Odvod člena ax^{n} je nax^{n-1}.
\frac{\left(x^{2}+8x^{1}+12\right)x^{0}-\left(x^{1}-6\right)\left(2x^{1}+8x^{0}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
Poenostavite.
\frac{x^{2}x^{0}+8x^{1}x^{0}+12x^{0}-\left(x^{1}-6\right)\left(2x^{1}+8x^{0}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
Pomnožite x^{2}+8x^{1}+12 s/z x^{0}.
\frac{x^{2}x^{0}+8x^{1}x^{0}+12x^{0}-\left(x^{1}\times 2x^{1}+x^{1}\times 8x^{0}-6\times 2x^{1}-6\times 8x^{0}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
Pomnožite x^{1}-6 s/z 2x^{1}+8x^{0}.
\frac{x^{2}+8x^{1}+12x^{0}-\left(2x^{1+1}+8x^{1}-6\times 2x^{1}-6\times 8x^{0}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
Če želite množiti potence iste osnove, seštejte njihove eksponente.
\frac{x^{2}+8x^{1}+12x^{0}-\left(2x^{2}+8x^{1}-12x^{1}-48x^{0}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
Poenostavite.
\frac{-x^{2}+12x^{1}+60x^{0}}{\left(x^{2}+8x^{1}+12\right)^{2}}
Združite podobne člene.
\frac{-x^{2}+12x+60x^{0}}{\left(x^{2}+8x+12\right)^{2}}
Za kakršen koli izraz t, t^{1}=t.
\frac{-x^{2}+12x+60\times 1}{\left(x^{2}+8x+12\right)^{2}}
Za kakršen koli izraz t, razen 0, t^{0}=1.
\frac{-x^{2}+12x+60}{\left(x^{2}+8x+12\right)^{2}}
Za kakršen koli izraz t, t\times 1=t in 1t=t.