Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Razširi
Tick mark Image
Graf

Delež

\frac{\left(x^{2}-x-12\right)\left(x^{2}-2x-8\right)}{\left(x^{2}-3x-10\right)\left(x^{2}-9x+20\right)}\times \frac{x-5}{x+3}
Delite \frac{x^{2}-x-12}{x^{2}-3x-10} s/z \frac{x^{2}-9x+20}{x^{2}-2x-8} tako, da pomnožite \frac{x^{2}-x-12}{x^{2}-3x-10} z obratno vrednostjo \frac{x^{2}-9x+20}{x^{2}-2x-8}.
\frac{\left(x+2\right)\left(x+3\right)\left(x-4\right)^{2}}{\left(x-4\right)\left(x+2\right)\left(x-5\right)^{2}}\times \frac{x-5}{x+3}
Faktorizirajte izraze, ki še niso faktorizirani v \frac{\left(x^{2}-x-12\right)\left(x^{2}-2x-8\right)}{\left(x^{2}-3x-10\right)\left(x^{2}-9x+20\right)}.
\frac{\left(x-4\right)\left(x+3\right)}{\left(x-5\right)^{2}}\times \frac{x-5}{x+3}
Okrajšaj \left(x-4\right)\left(x+2\right) v števcu in imenovalcu.
\frac{\left(x-4\right)\left(x+3\right)\left(x-5\right)}{\left(x-5\right)^{2}\left(x+3\right)}
Pomnožite \frac{\left(x-4\right)\left(x+3\right)}{\left(x-5\right)^{2}} s/z \frac{x-5}{x+3} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{x-4}{x-5}
Okrajšaj \left(x-5\right)\left(x+3\right) v števcu in imenovalcu.
\frac{\left(x^{2}-x-12\right)\left(x^{2}-2x-8\right)}{\left(x^{2}-3x-10\right)\left(x^{2}-9x+20\right)}\times \frac{x-5}{x+3}
Delite \frac{x^{2}-x-12}{x^{2}-3x-10} s/z \frac{x^{2}-9x+20}{x^{2}-2x-8} tako, da pomnožite \frac{x^{2}-x-12}{x^{2}-3x-10} z obratno vrednostjo \frac{x^{2}-9x+20}{x^{2}-2x-8}.
\frac{\left(x+2\right)\left(x+3\right)\left(x-4\right)^{2}}{\left(x-4\right)\left(x+2\right)\left(x-5\right)^{2}}\times \frac{x-5}{x+3}
Faktorizirajte izraze, ki še niso faktorizirani v \frac{\left(x^{2}-x-12\right)\left(x^{2}-2x-8\right)}{\left(x^{2}-3x-10\right)\left(x^{2}-9x+20\right)}.
\frac{\left(x-4\right)\left(x+3\right)}{\left(x-5\right)^{2}}\times \frac{x-5}{x+3}
Okrajšaj \left(x-4\right)\left(x+2\right) v števcu in imenovalcu.
\frac{\left(x-4\right)\left(x+3\right)\left(x-5\right)}{\left(x-5\right)^{2}\left(x+3\right)}
Pomnožite \frac{\left(x-4\right)\left(x+3\right)}{\left(x-5\right)^{2}} s/z \frac{x-5}{x+3} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{x-4}{x-5}
Okrajšaj \left(x-5\right)\left(x+3\right) v števcu in imenovalcu.