Preskoči na glavno vsebino
Rešitev za x
Tick mark Image
Graf

Podobne težave pri spletnem iskanju

Delež

x^{2}-3x-4=0
Spremenljivka x ne more biti enaka vrednosti 4, ker deljenje z vrednostjo nič ni določeno. Pomnožite obe strani enačbe s/z x-4.
a+b=-3 ab=-4
Če želite rešiti enačbo, faktor x^{2}-3x-4 s formulo x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Če želite poiskati a in b, nastavite sistem tako, da bo rešena.
1,-4 2,-2
Ker je ab negativen, a in b imajo nenegativno vrednost. a+b je negativno, negativna številka pa je večja absolutna vrednost kot pozitivna. Navedite vse takšne pare celega števila, ki nudijo -4 izdelka.
1-4=-3 2-2=0
Izračunajte vsoto za vsak par.
a=-4 b=1
Rešitev je par, ki zagotavlja vsoto -3.
\left(x-4\right)\left(x+1\right)
Faktorirati izraz za znova napišite \left(x+a\right)\left(x+b\right) z pridobljene vrednosti.
x=4 x=-1
Če želite poiskati rešitve za enačbe, rešite x-4=0 in x+1=0.
x=-1
Spremenljivka x ne more biti enaka vrednosti 4.
x^{2}-3x-4=0
Spremenljivka x ne more biti enaka vrednosti 4, ker deljenje z vrednostjo nič ni določeno. Pomnožite obe strani enačbe s/z x-4.
a+b=-3 ab=1\left(-4\right)=-4
Če želite rešiti enačbo, faktor levo roko po združiti. Najprej, na levi strani mora biti uporabnika kot x^{2}+ax+bx-4. Če želite poiskati a in b, nastavite sistem tako, da bo rešena.
1,-4 2,-2
Ker je ab negativen, a in b imajo nenegativno vrednost. a+b je negativno, negativna številka pa je večja absolutna vrednost kot pozitivna. Navedite vse takšne pare celega števila, ki nudijo -4 izdelka.
1-4=-3 2-2=0
Izračunajte vsoto za vsak par.
a=-4 b=1
Rešitev je par, ki zagotavlja vsoto -3.
\left(x^{2}-4x\right)+\left(x-4\right)
Znova zapišite x^{2}-3x-4 kot \left(x^{2}-4x\right)+\left(x-4\right).
x\left(x-4\right)+x-4
Faktorizirajte x v x^{2}-4x.
\left(x-4\right)\left(x+1\right)
Faktor skupnega člena x-4 z uporabo lastnosti distributivnosti.
x=4 x=-1
Če želite poiskati rešitve za enačbe, rešite x-4=0 in x+1=0.
x=-1
Spremenljivka x ne more biti enaka vrednosti 4.
x^{2}-3x-4=0
Spremenljivka x ne more biti enaka vrednosti 4, ker deljenje z vrednostjo nič ni določeno. Pomnožite obe strani enačbe s/z x-4.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-4\right)}}{2}
Ta enačba je v standardni obliki: ax^{2}+bx+c=0. Vstavite 1 za a, -3 za b in -4 za c v formulo za reševanje kvadratnih enačb \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-4\right)}}{2}
Kvadrat števila -3.
x=\frac{-\left(-3\right)±\sqrt{9+16}}{2}
Pomnožite -4 s/z -4.
x=\frac{-\left(-3\right)±\sqrt{25}}{2}
Seštejte 9 in 16.
x=\frac{-\left(-3\right)±5}{2}
Uporabite kvadratni koren števila 25.
x=\frac{3±5}{2}
Nasprotna vrednost -3 je 3.
x=\frac{8}{2}
Zdaj rešite enačbo x=\frac{3±5}{2}, ko je ± plus. Seštejte 3 in 5.
x=4
Delite 8 s/z 2.
x=-\frac{2}{2}
Zdaj rešite enačbo x=\frac{3±5}{2}, ko je ± minus. Odštejte 5 od 3.
x=-1
Delite -2 s/z 2.
x=4 x=-1
Enačba je zdaj rešena.
x=-1
Spremenljivka x ne more biti enaka vrednosti 4.
x^{2}-3x-4=0
Spremenljivka x ne more biti enaka vrednosti 4, ker deljenje z vrednostjo nič ni določeno. Pomnožite obe strani enačbe s/z x-4.
x^{2}-3x=4
Dodajte 4 na obe strani. Katero koli število, ki mu prištejete nič, ostane enako.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=4+\left(-\frac{3}{2}\right)^{2}
Delite -3, ki je koeficient člena x, z 2, da dobite -\frac{3}{2}. Nato dodajte kvadrat števila -\frac{3}{2} na obe strani enačbe. S tem korakom boste levo stran enačbe pretvorili v popolni kvadrat.
x^{2}-3x+\frac{9}{4}=4+\frac{9}{4}
Kvadrirajte ulomek -\frac{3}{2} tako, da kvadrirate števec in imenovalec ulomka.
x^{2}-3x+\frac{9}{4}=\frac{25}{4}
Seštejte 4 in \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{25}{4}
Faktorizirajte x^{2}-3x+\frac{9}{4}. Če je x^{2}+bx+c kvadrat, ga lahko vedno faktorizirate kot \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Uporabite kvadratni koren obeh strani enačbe.
x-\frac{3}{2}=\frac{5}{2} x-\frac{3}{2}=-\frac{5}{2}
Poenostavite.
x=4 x=-1
Prištejte \frac{3}{2} na obe strani enačbe.
x=-1
Spremenljivka x ne more biti enaka vrednosti 4.