Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Razširi
Tick mark Image
Graf

Podobne težave pri spletnem iskanju

Delež

\frac{x^{2}+x}{\left(x-5\right)\left(x+5\right)}+\frac{x^{2}-1}{\left(x+5\right)\left(x+6\right)}
Faktorizirajte x^{2}-25. Faktorizirajte x^{2}+11x+30.
\frac{\left(x^{2}+x\right)\left(x+6\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}+\frac{\left(x^{2}-1\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik \left(x-5\right)\left(x+5\right) in \left(x+5\right)\left(x+6\right) je \left(x-5\right)\left(x+5\right)\left(x+6\right). Pomnožite \frac{x^{2}+x}{\left(x-5\right)\left(x+5\right)} s/z \frac{x+6}{x+6}. Pomnožite \frac{x^{2}-1}{\left(x+5\right)\left(x+6\right)} s/z \frac{x-5}{x-5}.
\frac{\left(x^{2}+x\right)\left(x+6\right)+\left(x^{2}-1\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
\frac{\left(x^{2}+x\right)\left(x+6\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)} in \frac{\left(x^{2}-1\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{x^{3}+6x^{2}+x^{2}+6x+x^{3}-5x^{2}-x+5}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
Izvedi množenje v \left(x^{2}+x\right)\left(x+6\right)+\left(x^{2}-1\right)\left(x-5\right).
\frac{2x^{3}+2x^{2}+5x+5}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
Združite podobne člene v x^{3}+6x^{2}+x^{2}+6x+x^{3}-5x^{2}-x+5.
\frac{2x^{3}+2x^{2}+5x+5}{x^{3}+6x^{2}-25x-150}
Razčlenite \left(x-5\right)\left(x+5\right)\left(x+6\right).
\frac{x^{2}+x}{\left(x-5\right)\left(x+5\right)}+\frac{x^{2}-1}{\left(x+5\right)\left(x+6\right)}
Faktorizirajte x^{2}-25. Faktorizirajte x^{2}+11x+30.
\frac{\left(x^{2}+x\right)\left(x+6\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}+\frac{\left(x^{2}-1\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik \left(x-5\right)\left(x+5\right) in \left(x+5\right)\left(x+6\right) je \left(x-5\right)\left(x+5\right)\left(x+6\right). Pomnožite \frac{x^{2}+x}{\left(x-5\right)\left(x+5\right)} s/z \frac{x+6}{x+6}. Pomnožite \frac{x^{2}-1}{\left(x+5\right)\left(x+6\right)} s/z \frac{x-5}{x-5}.
\frac{\left(x^{2}+x\right)\left(x+6\right)+\left(x^{2}-1\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
\frac{\left(x^{2}+x\right)\left(x+6\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)} in \frac{\left(x^{2}-1\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{x^{3}+6x^{2}+x^{2}+6x+x^{3}-5x^{2}-x+5}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
Izvedi množenje v \left(x^{2}+x\right)\left(x+6\right)+\left(x^{2}-1\right)\left(x-5\right).
\frac{2x^{3}+2x^{2}+5x+5}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
Združite podobne člene v x^{3}+6x^{2}+x^{2}+6x+x^{3}-5x^{2}-x+5.
\frac{2x^{3}+2x^{2}+5x+5}{x^{3}+6x^{2}-25x-150}
Razčlenite \left(x-5\right)\left(x+5\right)\left(x+6\right).