Ovrednoti
\frac{2}{x-3}
Razširi
\frac{2}{x-3}
Graf
Delež
Kopirano v odložišče
\frac{x+1}{4\left(x-1\right)}+\frac{x+1}{\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Faktorizirajte 4x-4. Faktorizirajte x^{2}-4x+3.
\frac{\left(x+1\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)}+\frac{4\left(x+1\right)}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik 4\left(x-1\right) in \left(x-3\right)\left(x-1\right) je 4\left(x-3\right)\left(x-1\right). Pomnožite \frac{x+1}{4\left(x-1\right)} s/z \frac{x-3}{x-3}. Pomnožite \frac{x+1}{\left(x-3\right)\left(x-1\right)} s/z \frac{4}{4}.
\frac{\left(x+1\right)\left(x-3\right)+4\left(x+1\right)}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
\frac{\left(x+1\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)} in \frac{4\left(x+1\right)}{4\left(x-3\right)\left(x-1\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{x^{2}-3x+x-3+4x+4}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Izvedi množenje v \left(x+1\right)\left(x-3\right)+4\left(x+1\right).
\frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Združite podobne člene v x^{2}-3x+x-3+4x+4.
\frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4\left(x-1\right)}
Faktorizirajte 4x-4.
\frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)}-\frac{\left(x-3\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik 4\left(x-3\right)\left(x-1\right) in 4\left(x-1\right) je 4\left(x-3\right)\left(x-1\right). Pomnožite \frac{x-3}{4\left(x-1\right)} s/z \frac{x-3}{x-3}.
\frac{x^{2}+2x+1-\left(x-3\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)}
Ker \frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)} in \frac{\left(x-3\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{x^{2}+2x+1-x^{2}+3x+3x-9}{4\left(x-3\right)\left(x-1\right)}
Izvedi množenje v x^{2}+2x+1-\left(x-3\right)\left(x-3\right).
\frac{8x-8}{4\left(x-3\right)\left(x-1\right)}
Združite podobne člene v x^{2}+2x+1-x^{2}+3x+3x-9.
\frac{8\left(x-1\right)}{4\left(x-3\right)\left(x-1\right)}
Faktorizirajte izraze, ki še niso faktorizirani v \frac{8x-8}{4\left(x-3\right)\left(x-1\right)}.
\frac{2}{x-3}
Okrajšaj 4\left(x-1\right) v števcu in imenovalcu.
\frac{x+1}{4\left(x-1\right)}+\frac{x+1}{\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Faktorizirajte 4x-4. Faktorizirajte x^{2}-4x+3.
\frac{\left(x+1\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)}+\frac{4\left(x+1\right)}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik 4\left(x-1\right) in \left(x-3\right)\left(x-1\right) je 4\left(x-3\right)\left(x-1\right). Pomnožite \frac{x+1}{4\left(x-1\right)} s/z \frac{x-3}{x-3}. Pomnožite \frac{x+1}{\left(x-3\right)\left(x-1\right)} s/z \frac{4}{4}.
\frac{\left(x+1\right)\left(x-3\right)+4\left(x+1\right)}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
\frac{\left(x+1\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)} in \frac{4\left(x+1\right)}{4\left(x-3\right)\left(x-1\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{x^{2}-3x+x-3+4x+4}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Izvedi množenje v \left(x+1\right)\left(x-3\right)+4\left(x+1\right).
\frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Združite podobne člene v x^{2}-3x+x-3+4x+4.
\frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4\left(x-1\right)}
Faktorizirajte 4x-4.
\frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)}-\frac{\left(x-3\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik 4\left(x-3\right)\left(x-1\right) in 4\left(x-1\right) je 4\left(x-3\right)\left(x-1\right). Pomnožite \frac{x-3}{4\left(x-1\right)} s/z \frac{x-3}{x-3}.
\frac{x^{2}+2x+1-\left(x-3\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)}
Ker \frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)} in \frac{\left(x-3\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{x^{2}+2x+1-x^{2}+3x+3x-9}{4\left(x-3\right)\left(x-1\right)}
Izvedi množenje v x^{2}+2x+1-\left(x-3\right)\left(x-3\right).
\frac{8x-8}{4\left(x-3\right)\left(x-1\right)}
Združite podobne člene v x^{2}+2x+1-x^{2}+3x+3x-9.
\frac{8\left(x-1\right)}{4\left(x-3\right)\left(x-1\right)}
Faktorizirajte izraze, ki še niso faktorizirani v \frac{8x-8}{4\left(x-3\right)\left(x-1\right)}.
\frac{2}{x-3}
Okrajšaj 4\left(x-1\right) v števcu in imenovalcu.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}