Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Razširi
Tick mark Image
Graf

Podobne težave pri spletnem iskanju

Delež

\frac{x+1}{4\left(x-1\right)}+\frac{x+1}{\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Faktorizirajte 4x-4. Faktorizirajte x^{2}-4x+3.
\frac{\left(x+1\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)}+\frac{4\left(x+1\right)}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik 4\left(x-1\right) in \left(x-3\right)\left(x-1\right) je 4\left(x-3\right)\left(x-1\right). Pomnožite \frac{x+1}{4\left(x-1\right)} s/z \frac{x-3}{x-3}. Pomnožite \frac{x+1}{\left(x-3\right)\left(x-1\right)} s/z \frac{4}{4}.
\frac{\left(x+1\right)\left(x-3\right)+4\left(x+1\right)}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
\frac{\left(x+1\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)} in \frac{4\left(x+1\right)}{4\left(x-3\right)\left(x-1\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{x^{2}-3x+x-3+4x+4}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Izvedi množenje v \left(x+1\right)\left(x-3\right)+4\left(x+1\right).
\frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Združite podobne člene v x^{2}-3x+x-3+4x+4.
\frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4\left(x-1\right)}
Faktorizirajte 4x-4.
\frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)}-\frac{\left(x-3\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik 4\left(x-3\right)\left(x-1\right) in 4\left(x-1\right) je 4\left(x-3\right)\left(x-1\right). Pomnožite \frac{x-3}{4\left(x-1\right)} s/z \frac{x-3}{x-3}.
\frac{x^{2}+2x+1-\left(x-3\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)}
Ker \frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)} in \frac{\left(x-3\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{x^{2}+2x+1-x^{2}+3x+3x-9}{4\left(x-3\right)\left(x-1\right)}
Izvedi množenje v x^{2}+2x+1-\left(x-3\right)\left(x-3\right).
\frac{8x-8}{4\left(x-3\right)\left(x-1\right)}
Združite podobne člene v x^{2}+2x+1-x^{2}+3x+3x-9.
\frac{8\left(x-1\right)}{4\left(x-3\right)\left(x-1\right)}
Faktorizirajte izraze, ki še niso faktorizirani v \frac{8x-8}{4\left(x-3\right)\left(x-1\right)}.
\frac{2}{x-3}
Okrajšaj 4\left(x-1\right) v števcu in imenovalcu.
\frac{x+1}{4\left(x-1\right)}+\frac{x+1}{\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Faktorizirajte 4x-4. Faktorizirajte x^{2}-4x+3.
\frac{\left(x+1\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)}+\frac{4\left(x+1\right)}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik 4\left(x-1\right) in \left(x-3\right)\left(x-1\right) je 4\left(x-3\right)\left(x-1\right). Pomnožite \frac{x+1}{4\left(x-1\right)} s/z \frac{x-3}{x-3}. Pomnožite \frac{x+1}{\left(x-3\right)\left(x-1\right)} s/z \frac{4}{4}.
\frac{\left(x+1\right)\left(x-3\right)+4\left(x+1\right)}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
\frac{\left(x+1\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)} in \frac{4\left(x+1\right)}{4\left(x-3\right)\left(x-1\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{x^{2}-3x+x-3+4x+4}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Izvedi množenje v \left(x+1\right)\left(x-3\right)+4\left(x+1\right).
\frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Združite podobne člene v x^{2}-3x+x-3+4x+4.
\frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4\left(x-1\right)}
Faktorizirajte 4x-4.
\frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)}-\frac{\left(x-3\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik 4\left(x-3\right)\left(x-1\right) in 4\left(x-1\right) je 4\left(x-3\right)\left(x-1\right). Pomnožite \frac{x-3}{4\left(x-1\right)} s/z \frac{x-3}{x-3}.
\frac{x^{2}+2x+1-\left(x-3\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)}
Ker \frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)} in \frac{\left(x-3\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{x^{2}+2x+1-x^{2}+3x+3x-9}{4\left(x-3\right)\left(x-1\right)}
Izvedi množenje v x^{2}+2x+1-\left(x-3\right)\left(x-3\right).
\frac{8x-8}{4\left(x-3\right)\left(x-1\right)}
Združite podobne člene v x^{2}+2x+1-x^{2}+3x+3x-9.
\frac{8\left(x-1\right)}{4\left(x-3\right)\left(x-1\right)}
Faktorizirajte izraze, ki še niso faktorizirani v \frac{8x-8}{4\left(x-3\right)\left(x-1\right)}.
\frac{2}{x-3}
Okrajšaj 4\left(x-1\right) v števcu in imenovalcu.