Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Odvajajte w.r.t. x
Tick mark Image

Podobne težave pri spletnem iskanju

Delež

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x^{2}x^{2}}{x^{2}}+\frac{1}{x^{2}}}{x-\frac{1}{x}})
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Pomnožite x^{2} s/z \frac{x^{2}}{x^{2}}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x^{2}x^{2}+1}{x^{2}}}{x-\frac{1}{x}})
\frac{x^{2}x^{2}}{x^{2}} in \frac{1}{x^{2}} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x^{4}+1}{x^{2}}}{x-\frac{1}{x}})
Izvedi množenje v x^{2}x^{2}+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x^{4}+1}{x^{2}}}{\frac{xx}{x}-\frac{1}{x}})
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Pomnožite x s/z \frac{x}{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x^{4}+1}{x^{2}}}{\frac{xx-1}{x}})
Ker \frac{xx}{x} in \frac{1}{x} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x^{4}+1}{x^{2}}}{\frac{x^{2}-1}{x}})
Izvedi množenje v xx-1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x^{4}+1\right)x}{x^{2}\left(x^{2}-1\right)})
Delite \frac{x^{4}+1}{x^{2}} s/z \frac{x^{2}-1}{x} tako, da pomnožite \frac{x^{4}+1}{x^{2}} z obratno vrednostjo \frac{x^{2}-1}{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{4}+1}{x\left(x^{2}-1\right)})
Okrajšaj x v števcu in imenovalcu.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{4}+1}{x^{3}-x})
Uporabite distributivnost, da pomnožite x s/z x^{2}-1.
\frac{\left(x^{3}-x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}+1)-\left(x^{4}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}-x^{1})}{\left(x^{3}-x^{1}\right)^{2}}
Za kateri koli dve odvedljivi funkciji je odvod kvocienta dveh funkcij imenovalec krat odvod števca minus števec krat odvod imenovalca, vse skupaj pa je deljeno s kvadratom imenovalca.
\frac{\left(x^{3}-x^{1}\right)\times 4x^{4-1}-\left(x^{4}+1\right)\left(3x^{3-1}-x^{1-1}\right)}{\left(x^{3}-x^{1}\right)^{2}}
Odvod polinoma je vsota odvodov njegovih členov. Odvod katerega koli prostega člena je 0. Odvod člena ax^{n} je nax^{n-1}.
\frac{\left(x^{3}-x^{1}\right)\times 4x^{3}-\left(x^{4}+1\right)\left(3x^{2}-x^{0}\right)}{\left(x^{3}-x^{1}\right)^{2}}
Poenostavite.
\frac{x^{3}\times 4x^{3}-x^{1}\times 4x^{3}-\left(x^{4}+1\right)\left(3x^{2}-x^{0}\right)}{\left(x^{3}-x^{1}\right)^{2}}
Pomnožite x^{3}-x^{1} s/z 4x^{3}.
\frac{x^{3}\times 4x^{3}-x^{1}\times 4x^{3}-\left(x^{4}\times 3x^{2}+x^{4}\left(-1\right)x^{0}+3x^{2}-x^{0}\right)}{\left(x^{3}-x^{1}\right)^{2}}
Pomnožite x^{4}+1 s/z 3x^{2}-x^{0}.
\frac{4x^{3+3}-4x^{1+3}-\left(3x^{4+2}-x^{4}+3x^{2}-x^{0}\right)}{\left(x^{3}-x^{1}\right)^{2}}
Če želite množiti potence iste osnove, seštejte njihove eksponente.
\frac{4x^{6}-4x^{4}-\left(3x^{6}-x^{4}+3x^{2}-x^{0}\right)}{\left(x^{3}-x^{1}\right)^{2}}
Poenostavite.
\frac{x^{6}-3x^{4}-3x^{2}-\left(-x^{0}\right)}{\left(x^{3}-x^{1}\right)^{2}}
Združite podobne člene.
\frac{x^{6}-3x^{4}-3x^{2}-\left(-x^{0}\right)}{\left(x^{3}-x\right)^{2}}
Za kakršen koli izraz t, t^{1}=t.
\frac{x^{6}-3x^{4}-3x^{2}-\left(-1\right)}{\left(x^{3}-x\right)^{2}}
Za kakršen koli izraz t, razen 0, t^{0}=1.