Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Razširi
Tick mark Image

Podobne težave pri spletnem iskanju

Delež

\frac{c+12}{\left(12-c\right)^{2}}+\frac{12}{c\left(-c+12\right)}
Faktorizirajte 12c-c^{2}.
\frac{\left(c+12\right)c\left(-c+12\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}}+\frac{12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik \left(12-c\right)^{2} in c\left(-c+12\right) je c\left(-c+12\right)\left(-c+12\right)^{2}. Pomnožite \frac{c+12}{\left(12-c\right)^{2}} s/z \frac{c\left(-c+12\right)}{c\left(-c+12\right)}. Pomnožite \frac{12}{c\left(-c+12\right)} s/z \frac{\left(-c+12\right)^{2}}{\left(-c+12\right)^{2}}.
\frac{\left(c+12\right)c\left(-c+12\right)+12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}}
\frac{\left(c+12\right)c\left(-c+12\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}} in \frac{12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{-c^{3}+12c^{2}-12c^{2}+144c+12c^{2}-288c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Izvedi množenje v \left(c+12\right)c\left(-c+12\right)+12\left(-c+12\right)^{2}.
\frac{-c^{3}+12c^{2}-144c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Združite podobne člene v -c^{3}+12c^{2}-12c^{2}+144c+12c^{2}-288c+1728.
\frac{\left(-c+12\right)\left(c^{2}+144\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Faktorizirajte izraze, ki še niso faktorizirani v \frac{-c^{3}+12c^{2}-144c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}.
\frac{c^{2}+144}{c\left(-c+12\right)^{2}}
Okrajšaj -c+12 v števcu in imenovalcu.
\frac{c^{2}+144}{c^{3}-24c^{2}+144c}
Razčlenite c\left(-c+12\right)^{2}.
\frac{c+12}{\left(12-c\right)^{2}}+\frac{12}{c\left(-c+12\right)}
Faktorizirajte 12c-c^{2}.
\frac{\left(c+12\right)c\left(-c+12\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}}+\frac{12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik \left(12-c\right)^{2} in c\left(-c+12\right) je c\left(-c+12\right)\left(-c+12\right)^{2}. Pomnožite \frac{c+12}{\left(12-c\right)^{2}} s/z \frac{c\left(-c+12\right)}{c\left(-c+12\right)}. Pomnožite \frac{12}{c\left(-c+12\right)} s/z \frac{\left(-c+12\right)^{2}}{\left(-c+12\right)^{2}}.
\frac{\left(c+12\right)c\left(-c+12\right)+12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}}
\frac{\left(c+12\right)c\left(-c+12\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}} in \frac{12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{-c^{3}+12c^{2}-12c^{2}+144c+12c^{2}-288c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Izvedi množenje v \left(c+12\right)c\left(-c+12\right)+12\left(-c+12\right)^{2}.
\frac{-c^{3}+12c^{2}-144c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Združite podobne člene v -c^{3}+12c^{2}-12c^{2}+144c+12c^{2}-288c+1728.
\frac{\left(-c+12\right)\left(c^{2}+144\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Faktorizirajte izraze, ki še niso faktorizirani v \frac{-c^{3}+12c^{2}-144c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}.
\frac{c^{2}+144}{c\left(-c+12\right)^{2}}
Okrajšaj -c+12 v števcu in imenovalcu.
\frac{c^{2}+144}{c^{3}-24c^{2}+144c}
Razčlenite c\left(-c+12\right)^{2}.