Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Razširi
Tick mark Image

Podobne težave pri spletnem iskanju

Delež

\frac{\left(a-2\right)\left(a^{2}+2a+4\right)}{\left(a-2\right)\left(a+2\right)}+\frac{a}{a^{3}+8}
Faktorizirajte izraze, ki še niso faktorizirani v \frac{a^{3}-8}{a^{2}-4}.
\frac{a^{2}+2a+4}{a+2}+\frac{a}{a^{3}+8}
Okrajšaj a-2 v števcu in imenovalcu.
\frac{a^{2}+2a+4}{a+2}+\frac{a}{\left(a+2\right)\left(a^{2}-2a+4\right)}
Faktorizirajte a^{3}+8.
\frac{\left(a^{2}+2a+4\right)\left(a^{2}-2a+4\right)}{\left(a+2\right)\left(a^{2}-2a+4\right)}+\frac{a}{\left(a+2\right)\left(a^{2}-2a+4\right)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik a+2 in \left(a+2\right)\left(a^{2}-2a+4\right) je \left(a+2\right)\left(a^{2}-2a+4\right). Pomnožite \frac{a^{2}+2a+4}{a+2} s/z \frac{a^{2}-2a+4}{a^{2}-2a+4}.
\frac{\left(a^{2}+2a+4\right)\left(a^{2}-2a+4\right)+a}{\left(a+2\right)\left(a^{2}-2a+4\right)}
\frac{\left(a^{2}+2a+4\right)\left(a^{2}-2a+4\right)}{\left(a+2\right)\left(a^{2}-2a+4\right)} in \frac{a}{\left(a+2\right)\left(a^{2}-2a+4\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{a^{4}-2a^{3}+4a^{2}+2a^{3}-4a^{2}+8a+4a^{2}-8a+16+a}{\left(a+2\right)\left(a^{2}-2a+4\right)}
Izvedi množenje v \left(a^{2}+2a+4\right)\left(a^{2}-2a+4\right)+a.
\frac{a^{4}+4a^{2}+a+16}{\left(a+2\right)\left(a^{2}-2a+4\right)}
Združite podobne člene v a^{4}-2a^{3}+4a^{2}+2a^{3}-4a^{2}+8a+4a^{2}-8a+16+a.
\frac{a^{4}+4a^{2}+a+16}{a^{3}+8}
Razčlenite \left(a+2\right)\left(a^{2}-2a+4\right).
\frac{\left(a-2\right)\left(a^{2}+2a+4\right)}{\left(a-2\right)\left(a+2\right)}+\frac{a}{a^{3}+8}
Faktorizirajte izraze, ki še niso faktorizirani v \frac{a^{3}-8}{a^{2}-4}.
\frac{a^{2}+2a+4}{a+2}+\frac{a}{a^{3}+8}
Okrajšaj a-2 v števcu in imenovalcu.
\frac{a^{2}+2a+4}{a+2}+\frac{a}{\left(a+2\right)\left(a^{2}-2a+4\right)}
Faktorizirajte a^{3}+8.
\frac{\left(a^{2}+2a+4\right)\left(a^{2}-2a+4\right)}{\left(a+2\right)\left(a^{2}-2a+4\right)}+\frac{a}{\left(a+2\right)\left(a^{2}-2a+4\right)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik a+2 in \left(a+2\right)\left(a^{2}-2a+4\right) je \left(a+2\right)\left(a^{2}-2a+4\right). Pomnožite \frac{a^{2}+2a+4}{a+2} s/z \frac{a^{2}-2a+4}{a^{2}-2a+4}.
\frac{\left(a^{2}+2a+4\right)\left(a^{2}-2a+4\right)+a}{\left(a+2\right)\left(a^{2}-2a+4\right)}
\frac{\left(a^{2}+2a+4\right)\left(a^{2}-2a+4\right)}{\left(a+2\right)\left(a^{2}-2a+4\right)} in \frac{a}{\left(a+2\right)\left(a^{2}-2a+4\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{a^{4}-2a^{3}+4a^{2}+2a^{3}-4a^{2}+8a+4a^{2}-8a+16+a}{\left(a+2\right)\left(a^{2}-2a+4\right)}
Izvedi množenje v \left(a^{2}+2a+4\right)\left(a^{2}-2a+4\right)+a.
\frac{a^{4}+4a^{2}+a+16}{\left(a+2\right)\left(a^{2}-2a+4\right)}
Združite podobne člene v a^{4}-2a^{3}+4a^{2}+2a^{3}-4a^{2}+8a+4a^{2}-8a+16+a.
\frac{a^{4}+4a^{2}+a+16}{a^{3}+8}
Razčlenite \left(a+2\right)\left(a^{2}-2a+4\right).