Rešitev za x (complex solution)
x\in \mathrm{C}\setminus -6,6,0,-12,3
Rešitev za x
x\in \mathrm{R}\setminus 6,-6,0,3,-12
Graf
Delež
Kopirano v odložišče
\frac{1}{6}\left(x+6\right)\left(12+x\right)\times \frac{6x-36}{x^{2}-36}=x+12
Spremenljivka x ne more biti enaka nobeni od vrednosti -6,0, ker deljenje z vrednostjo nič ni določeno. Pomnožite obe strani enačbe s/z 2x\left(x+6\right).
\left(\frac{1}{6}x+1\right)\left(12+x\right)\times \frac{6x-36}{x^{2}-36}=x+12
Uporabite distributivnost, da pomnožite \frac{1}{6} s/z x+6.
\left(3x+\frac{1}{6}x^{2}+12\right)\times \frac{6x-36}{x^{2}-36}=x+12
Uporabite lastnost distributivnosti za množenje \frac{1}{6}x+1 krat 12+x in kombiniranje pogojev podobnosti.
3x\times \frac{6x-36}{x^{2}-36}+\frac{1}{6}x^{2}\times \frac{6x-36}{x^{2}-36}+12\times \frac{6x-36}{x^{2}-36}=x+12
Uporabite distributivnost, da pomnožite 3x+\frac{1}{6}x^{2}+12 s/z \frac{6x-36}{x^{2}-36}.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{1}{6}x^{2}\times \frac{6x-36}{x^{2}-36}+12\times \frac{6x-36}{x^{2}-36}=x+12
Izrazite 3\times \frac{6x-36}{x^{2}-36} kot enojni ulomek.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+12\times \frac{6x-36}{x^{2}-36}=x+12
Pomnožite \frac{1}{6} s/z \frac{6x-36}{x^{2}-36} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Izrazite 12\times \frac{6x-36}{x^{2}-36} kot enojni ulomek.
\frac{18x-108}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Uporabite distributivnost, da pomnožite 3 s/z 6x-36.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Izrazite \frac{18x-108}{x^{2}-36}x kot enojni ulomek.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{6\left(x-6\right)}{6\left(x-6\right)\left(x+6\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Faktorizirajte izraze, ki še niso faktorizirani v \frac{6x-36}{6\left(x^{2}-36\right)}.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{x-6}{\left(x-6\right)\left(x+6\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Okrajšaj 6 v števcu in imenovalcu.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Izrazite \frac{x-6}{\left(x-6\right)\left(x+6\right)}x^{2} kot enojni ulomek.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Uporabite distributivnost, da pomnožite 12 s/z 6x-36.
\frac{\left(18x-108\right)x}{\left(x-6\right)\left(x+6\right)}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Faktorizirajte x^{2}-36.
\frac{\left(18x-108\right)x+\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
\frac{\left(18x-108\right)x}{\left(x-6\right)\left(x+6\right)} in \frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{18x^{2}-108x+x^{3}-6x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Izvedi množenje v \left(18x-108\right)x+\left(x-6\right)x^{2}.
\frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Združite podobne člene v 18x^{2}-108x+x^{3}-6x^{2}.
\frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{\left(x-6\right)\left(x+6\right)}=x+12
Faktorizirajte x^{2}-36.
\frac{12x^{2}-108x+x^{3}+72x-432}{\left(x-6\right)\left(x+6\right)}=x+12
\frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)} in \frac{72x-432}{\left(x-6\right)\left(x+6\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}=x+12
Združite podobne člene v 12x^{2}-108x+x^{3}+72x-432.
\frac{12x^{2}-36x+x^{3}-432}{x^{2}-36}=x+12
Razmislite o \left(x-6\right)\left(x+6\right). Množenje je lahko preoblikovano v razliko kvadratov s pravilom: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Kvadrat števila 6.
\frac{12x^{2}-36x+x^{3}-432}{x^{2}-36}-x=12
Odštejte x na obeh straneh.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}-x=12
Faktorizirajte x^{2}-36.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}-\frac{x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=12
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Pomnožite x s/z \frac{\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}.
\frac{12x^{2}-36x+x^{3}-432-x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=12
Ker \frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)} in \frac{x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{12x^{2}-36x+x^{3}-432-x^{3}-6x^{2}+6x^{2}+36x}{\left(x-6\right)\left(x+6\right)}=12
Izvedi množenje v 12x^{2}-36x+x^{3}-432-x\left(x-6\right)\left(x+6\right).
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}=12
Združite podobne člene v 12x^{2}-36x+x^{3}-432-x^{3}-6x^{2}+6x^{2}+36x.
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}-12=0
Odštejte 12 na obeh straneh.
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}-\frac{12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=0
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Pomnožite 12 s/z \frac{\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}.
\frac{12x^{2}-432-12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=0
Ker \frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)} in \frac{12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{12x^{2}-432-12x^{2}-72x+72x+432}{\left(x-6\right)\left(x+6\right)}=0
Izvedi množenje v 12x^{2}-432-12\left(x-6\right)\left(x+6\right).
\frac{0}{\left(x-6\right)\left(x+6\right)}=0
Združite podobne člene v 12x^{2}-432-12x^{2}-72x+72x+432.
0=0
Spremenljivka x ne more biti enaka nobeni od vrednosti -6,6, ker deljenje z vrednostjo nič ni določeno. Pomnožite obe strani enačbe s/z \left(x-6\right)\left(x+6\right).
x\in \mathrm{C}
To je za vsak x »true«.
x\in \mathrm{C}\setminus -6,0,6
Spremenljivka x ne more biti enaka nobeni od vrednosti -6,6,0.
\frac{1}{6}\left(x+6\right)\left(12+x\right)\times \frac{6x-36}{x^{2}-36}=x+12
Spremenljivka x ne more biti enaka nobeni od vrednosti -6,0, ker deljenje z vrednostjo nič ni določeno. Pomnožite obe strani enačbe s/z 2x\left(x+6\right).
\left(\frac{1}{6}x+1\right)\left(12+x\right)\times \frac{6x-36}{x^{2}-36}=x+12
Uporabite distributivnost, da pomnožite \frac{1}{6} s/z x+6.
\left(3x+\frac{1}{6}x^{2}+12\right)\times \frac{6x-36}{x^{2}-36}=x+12
Uporabite lastnost distributivnosti za množenje \frac{1}{6}x+1 krat 12+x in kombiniranje pogojev podobnosti.
3x\times \frac{6x-36}{x^{2}-36}+\frac{1}{6}x^{2}\times \frac{6x-36}{x^{2}-36}+12\times \frac{6x-36}{x^{2}-36}=x+12
Uporabite distributivnost, da pomnožite 3x+\frac{1}{6}x^{2}+12 s/z \frac{6x-36}{x^{2}-36}.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{1}{6}x^{2}\times \frac{6x-36}{x^{2}-36}+12\times \frac{6x-36}{x^{2}-36}=x+12
Izrazite 3\times \frac{6x-36}{x^{2}-36} kot enojni ulomek.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+12\times \frac{6x-36}{x^{2}-36}=x+12
Pomnožite \frac{1}{6} s/z \frac{6x-36}{x^{2}-36} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Izrazite 12\times \frac{6x-36}{x^{2}-36} kot enojni ulomek.
\frac{18x-108}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Uporabite distributivnost, da pomnožite 3 s/z 6x-36.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Izrazite \frac{18x-108}{x^{2}-36}x kot enojni ulomek.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{6\left(x-6\right)}{6\left(x-6\right)\left(x+6\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Faktorizirajte izraze, ki še niso faktorizirani v \frac{6x-36}{6\left(x^{2}-36\right)}.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{x-6}{\left(x-6\right)\left(x+6\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Okrajšaj 6 v števcu in imenovalcu.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Izrazite \frac{x-6}{\left(x-6\right)\left(x+6\right)}x^{2} kot enojni ulomek.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Uporabite distributivnost, da pomnožite 12 s/z 6x-36.
\frac{\left(18x-108\right)x}{\left(x-6\right)\left(x+6\right)}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Faktorizirajte x^{2}-36.
\frac{\left(18x-108\right)x+\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
\frac{\left(18x-108\right)x}{\left(x-6\right)\left(x+6\right)} in \frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{18x^{2}-108x+x^{3}-6x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Izvedi množenje v \left(18x-108\right)x+\left(x-6\right)x^{2}.
\frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Združite podobne člene v 18x^{2}-108x+x^{3}-6x^{2}.
\frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{\left(x-6\right)\left(x+6\right)}=x+12
Faktorizirajte x^{2}-36.
\frac{12x^{2}-108x+x^{3}+72x-432}{\left(x-6\right)\left(x+6\right)}=x+12
\frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)} in \frac{72x-432}{\left(x-6\right)\left(x+6\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}=x+12
Združite podobne člene v 12x^{2}-108x+x^{3}+72x-432.
\frac{12x^{2}-36x+x^{3}-432}{x^{2}-36}=x+12
Razmislite o \left(x-6\right)\left(x+6\right). Množenje je lahko preoblikovano v razliko kvadratov s pravilom: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Kvadrat števila 6.
\frac{12x^{2}-36x+x^{3}-432}{x^{2}-36}-x=12
Odštejte x na obeh straneh.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}-x=12
Faktorizirajte x^{2}-36.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}-\frac{x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=12
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Pomnožite x s/z \frac{\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}.
\frac{12x^{2}-36x+x^{3}-432-x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=12
Ker \frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)} in \frac{x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{12x^{2}-36x+x^{3}-432-x^{3}-6x^{2}+6x^{2}+36x}{\left(x-6\right)\left(x+6\right)}=12
Izvedi množenje v 12x^{2}-36x+x^{3}-432-x\left(x-6\right)\left(x+6\right).
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}=12
Združite podobne člene v 12x^{2}-36x+x^{3}-432-x^{3}-6x^{2}+6x^{2}+36x.
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}-12=0
Odštejte 12 na obeh straneh.
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}-\frac{12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=0
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Pomnožite 12 s/z \frac{\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}.
\frac{12x^{2}-432-12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=0
Ker \frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)} in \frac{12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{12x^{2}-432-12x^{2}-72x+72x+432}{\left(x-6\right)\left(x+6\right)}=0
Izvedi množenje v 12x^{2}-432-12\left(x-6\right)\left(x+6\right).
\frac{0}{\left(x-6\right)\left(x+6\right)}=0
Združite podobne člene v 12x^{2}-432-12x^{2}-72x+72x+432.
0=0
Spremenljivka x ne more biti enaka nobeni od vrednosti -6,6, ker deljenje z vrednostjo nič ni določeno. Pomnožite obe strani enačbe s/z \left(x-6\right)\left(x+6\right).
x\in \mathrm{R}
To je za vsak x »true«.
x\in \mathrm{R}\setminus -6,0,6
Spremenljivka x ne more biti enaka nobeni od vrednosti -6,6,0.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}