Ovrednoti
\frac{x-33}{\left(3-x\right)\left(x-1\right)}
Odvajajte w.r.t. x
\frac{x^{2}-66x+129}{x^{4}-8x^{3}+22x^{2}-24x+9}
Graf
Delež
Kopirano v odložišče
\frac{24}{x^{2}-4x+3}-\frac{3}{3-x}-\frac{4}{x-1}
Pomnožite 4 in 6, da dobite 24.
\frac{24}{\left(x-3\right)\left(x-1\right)}-\frac{3}{3-x}-\frac{4}{x-1}
Faktorizirajte x^{2}-4x+3.
\frac{24}{\left(x-3\right)\left(x-1\right)}-\frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik \left(x-3\right)\left(x-1\right) in 3-x je \left(x-3\right)\left(x-1\right). Pomnožite \frac{3}{3-x} s/z \frac{-\left(x-1\right)}{-\left(x-1\right)}.
\frac{24-3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
Ker \frac{24}{\left(x-3\right)\left(x-1\right)} in \frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{24+3x-3}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
Izvedi množenje v 24-3\left(-1\right)\left(x-1\right).
\frac{21+3x}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1}
Združite podobne člene v 24+3x-3.
\frac{21+3x}{\left(x-3\right)\left(x-1\right)}-\frac{4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik \left(x-3\right)\left(x-1\right) in x-1 je \left(x-3\right)\left(x-1\right). Pomnožite \frac{4}{x-1} s/z \frac{x-3}{x-3}.
\frac{21+3x-4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)}
Ker \frac{21+3x}{\left(x-3\right)\left(x-1\right)} in \frac{4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{21+3x-4x+12}{\left(x-3\right)\left(x-1\right)}
Izvedi množenje v 21+3x-4\left(x-3\right).
\frac{33-x}{\left(x-3\right)\left(x-1\right)}
Združite podobne člene v 21+3x-4x+12.
\frac{33-x}{x^{2}-4x+3}
Razčlenite \left(x-3\right)\left(x-1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24}{x^{2}-4x+3}-\frac{3}{3-x}-\frac{4}{x-1})
Pomnožite 4 in 6, da dobite 24.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24}{\left(x-3\right)\left(x-1\right)}-\frac{3}{3-x}-\frac{4}{x-1})
Faktorizirajte x^{2}-4x+3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24}{\left(x-3\right)\left(x-1\right)}-\frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1})
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik \left(x-3\right)\left(x-1\right) in 3-x je \left(x-3\right)\left(x-1\right). Pomnožite \frac{3}{3-x} s/z \frac{-\left(x-1\right)}{-\left(x-1\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24-3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1})
Ker \frac{24}{\left(x-3\right)\left(x-1\right)} in \frac{3\left(-1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24+3x-3}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1})
Izvedi množenje v 24-3\left(-1\right)\left(x-1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{21+3x}{\left(x-3\right)\left(x-1\right)}-\frac{4}{x-1})
Združite podobne člene v 24+3x-3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{21+3x}{\left(x-3\right)\left(x-1\right)}-\frac{4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)})
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik \left(x-3\right)\left(x-1\right) in x-1 je \left(x-3\right)\left(x-1\right). Pomnožite \frac{4}{x-1} s/z \frac{x-3}{x-3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{21+3x-4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)})
Ker \frac{21+3x}{\left(x-3\right)\left(x-1\right)} in \frac{4\left(x-3\right)}{\left(x-3\right)\left(x-1\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{21+3x-4x+12}{\left(x-3\right)\left(x-1\right)})
Izvedi množenje v 21+3x-4\left(x-3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{33-x}{\left(x-3\right)\left(x-1\right)})
Združite podobne člene v 21+3x-4x+12.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{33-x}{x^{2}-4x+3})
Uporabite lastnost distributivnosti za množenje x-3 krat x-1 in kombiniranje pogojev podobnosti.
\frac{\left(x^{2}-4x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}+33)-\left(-x^{1}+33\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-4x^{1}+3)}{\left(x^{2}-4x^{1}+3\right)^{2}}
Za kateri koli dve odvedljivi funkciji je odvod kvocienta dveh funkcij imenovalec krat odvod števca minus števec krat odvod imenovalca, vse skupaj pa je deljeno s kvadratom imenovalca.
\frac{\left(x^{2}-4x^{1}+3\right)\left(-1\right)x^{1-1}-\left(-x^{1}+33\right)\left(2x^{2-1}-4x^{1-1}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
Odvod polinoma je vsota odvodov njegovih členov. Odvod katerega koli prostega člena je 0. Odvod člena ax^{n} je nax^{n-1}.
\frac{\left(x^{2}-4x^{1}+3\right)\left(-1\right)x^{0}-\left(-x^{1}+33\right)\left(2x^{1}-4x^{0}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
Poenostavite.
\frac{x^{2}\left(-1\right)x^{0}-4x^{1}\left(-1\right)x^{0}+3\left(-1\right)x^{0}-\left(-x^{1}+33\right)\left(2x^{1}-4x^{0}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
Pomnožite x^{2}-4x^{1}+3 s/z -x^{0}.
\frac{x^{2}\left(-1\right)x^{0}-4x^{1}\left(-1\right)x^{0}+3\left(-1\right)x^{0}-\left(-x^{1}\times 2x^{1}-x^{1}\left(-4\right)x^{0}+33\times 2x^{1}+33\left(-4\right)x^{0}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
Pomnožite -x^{1}+33 s/z 2x^{1}-4x^{0}.
\frac{-x^{2}-4\left(-1\right)x^{1}+3\left(-1\right)x^{0}-\left(-2x^{1+1}-\left(-4x^{1}\right)+33\times 2x^{1}+33\left(-4\right)x^{0}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
Če želite množiti potence iste osnove, seštejte njihove eksponente.
\frac{-x^{2}+4x^{1}-3x^{0}-\left(-2x^{2}+4x^{1}+66x^{1}-132x^{0}\right)}{\left(x^{2}-4x^{1}+3\right)^{2}}
Poenostavite.
\frac{x^{2}-66x^{1}+129x^{0}}{\left(x^{2}-4x^{1}+3\right)^{2}}
Združite podobne člene.
\frac{x^{2}-66x+129x^{0}}{\left(x^{2}-4x+3\right)^{2}}
Za kakršen koli izraz t, t^{1}=t.
\frac{x^{2}-66x+129\times 1}{\left(x^{2}-4x+3\right)^{2}}
Za kakršen koli izraz t, razen 0, t^{0}=1.
\frac{x^{2}-66x+129}{\left(x^{2}-4x+3\right)^{2}}
Za kakršen koli izraz t, t\times 1=t in 1t=t.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}