Ovrednoti
\frac{25x-15}{2}
Razširi
\frac{25x-15}{2}
Graf
Delež
Kopirano v odložišče
\frac{3\times \frac{4}{-2}-4}{\frac{4}{3-5x}}
Odštejte 5 od 3, da dobite -2.
\frac{3\left(-2\right)-4}{\frac{4}{3-5x}}
Delite 4 s/z -2, da dobite -2.
\frac{-6-4}{\frac{4}{3-5x}}
Pomnožite 3 in -2, da dobite -6.
\frac{-10}{\frac{4}{3-5x}}
Odštejte 4 od -6, da dobite -10.
\frac{-10\left(3-5x\right)}{4}
Delite -10 s/z \frac{4}{3-5x} tako, da pomnožite -10 z obratno vrednostjo \frac{4}{3-5x}.
-\frac{5}{2}\left(3-5x\right)
Delite -10\left(3-5x\right) s/z 4, da dobite -\frac{5}{2}\left(3-5x\right).
-\frac{5}{2}\times 3-\frac{5}{2}\left(-5\right)x
Uporabite distributivnost, da pomnožite -\frac{5}{2} s/z 3-5x.
\frac{-5\times 3}{2}-\frac{5}{2}\left(-5\right)x
Izrazite -\frac{5}{2}\times 3 kot enojni ulomek.
\frac{-15}{2}-\frac{5}{2}\left(-5\right)x
Pomnožite -5 in 3, da dobite -15.
-\frac{15}{2}-\frac{5}{2}\left(-5\right)x
Ulomek \frac{-15}{2} je mogoče drugače zapisati kot -\frac{15}{2} z ekstrahiranjem negativnega znaka.
-\frac{15}{2}+\frac{-5\left(-5\right)}{2}x
Izrazite -\frac{5}{2}\left(-5\right) kot enojni ulomek.
-\frac{15}{2}+\frac{25}{2}x
Pomnožite -5 in -5, da dobite 25.
\frac{3\times \frac{4}{-2}-4}{\frac{4}{3-5x}}
Odštejte 5 od 3, da dobite -2.
\frac{3\left(-2\right)-4}{\frac{4}{3-5x}}
Delite 4 s/z -2, da dobite -2.
\frac{-6-4}{\frac{4}{3-5x}}
Pomnožite 3 in -2, da dobite -6.
\frac{-10}{\frac{4}{3-5x}}
Odštejte 4 od -6, da dobite -10.
\frac{-10\left(3-5x\right)}{4}
Delite -10 s/z \frac{4}{3-5x} tako, da pomnožite -10 z obratno vrednostjo \frac{4}{3-5x}.
-\frac{5}{2}\left(3-5x\right)
Delite -10\left(3-5x\right) s/z 4, da dobite -\frac{5}{2}\left(3-5x\right).
-\frac{5}{2}\times 3-\frac{5}{2}\left(-5\right)x
Uporabite distributivnost, da pomnožite -\frac{5}{2} s/z 3-5x.
\frac{-5\times 3}{2}-\frac{5}{2}\left(-5\right)x
Izrazite -\frac{5}{2}\times 3 kot enojni ulomek.
\frac{-15}{2}-\frac{5}{2}\left(-5\right)x
Pomnožite -5 in 3, da dobite -15.
-\frac{15}{2}-\frac{5}{2}\left(-5\right)x
Ulomek \frac{-15}{2} je mogoče drugače zapisati kot -\frac{15}{2} z ekstrahiranjem negativnega znaka.
-\frac{15}{2}+\frac{-5\left(-5\right)}{2}x
Izrazite -\frac{5}{2}\left(-5\right) kot enojni ulomek.
-\frac{15}{2}+\frac{25}{2}x
Pomnožite -5 in -5, da dobite 25.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}