Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Faktoriziraj
Tick mark Image

Podobne težave pri spletnem iskanju

Delež

\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)}\times \frac{\sqrt{2}-1}{\sqrt{2}}
Racionalizirajte imenovalec \frac{3+2\sqrt{2}}{2+\sqrt{2}} tako, da pomnožite števec in imenovalec s 2-\sqrt{2}.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{2^{2}-\left(\sqrt{2}\right)^{2}}\times \frac{\sqrt{2}-1}{\sqrt{2}}
Razmislite o \left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right). Množenje je lahko preoblikovano v razliko kvadratov s pravilom: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{4-2}\times \frac{\sqrt{2}-1}{\sqrt{2}}
Kvadrat števila 2. Kvadrat števila \sqrt{2}.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{2}\times \frac{\sqrt{2}-1}{\sqrt{2}}
Odštejte 2 od 4, da dobite 2.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{2}\times \frac{\left(\sqrt{2}-1\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Racionalizirajte imenovalec \frac{\sqrt{2}-1}{\sqrt{2}} tako, da pomnožite števec in imenovalec s \sqrt{2}.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{2}\times \frac{\left(\sqrt{2}-1\right)\sqrt{2}}{2}
Kvadrat vrednosti \sqrt{2} je 2.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)\left(\sqrt{2}-1\right)\sqrt{2}}{2\times 2}
Pomnožite \frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{2} s/z \frac{\left(\sqrt{2}-1\right)\sqrt{2}}{2} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)\left(\sqrt{2}-1\right)\sqrt{2}}{4}
Pomnožite 2 in 2, da dobite 4.
\frac{\left(6-3\sqrt{2}+4\sqrt{2}-2\left(\sqrt{2}\right)^{2}\right)\left(\sqrt{2}-1\right)\sqrt{2}}{4}
Uporabite distributivnost tako, da pomnožite vsako vrednost 3+2\sqrt{2} z vsako vrednostjo 2-\sqrt{2}.
\frac{\left(6+\sqrt{2}-2\left(\sqrt{2}\right)^{2}\right)\left(\sqrt{2}-1\right)\sqrt{2}}{4}
Združite -3\sqrt{2} in 4\sqrt{2}, da dobite \sqrt{2}.
\frac{\left(6+\sqrt{2}-2\times 2\right)\left(\sqrt{2}-1\right)\sqrt{2}}{4}
Kvadrat vrednosti \sqrt{2} je 2.
\frac{\left(6+\sqrt{2}-4\right)\left(\sqrt{2}-1\right)\sqrt{2}}{4}
Pomnožite -2 in 2, da dobite -4.
\frac{\left(2+\sqrt{2}\right)\left(\sqrt{2}-1\right)\sqrt{2}}{4}
Odštejte 4 od 6, da dobite 2.
\frac{\left(2\sqrt{2}-2+\left(\sqrt{2}\right)^{2}-\sqrt{2}\right)\sqrt{2}}{4}
Uporabite distributivnost tako, da pomnožite vsako vrednost 2+\sqrt{2} z vsako vrednostjo \sqrt{2}-1.
\frac{\left(2\sqrt{2}-2+2-\sqrt{2}\right)\sqrt{2}}{4}
Kvadrat vrednosti \sqrt{2} je 2.
\frac{\left(2\sqrt{2}-\sqrt{2}\right)\sqrt{2}}{4}
Seštejte -2 in 2, da dobite 0.
\frac{\sqrt{2}\sqrt{2}}{4}
Združite 2\sqrt{2} in -\sqrt{2}, da dobite \sqrt{2}.
\frac{2}{4}
Pomnožite \sqrt{2} in \sqrt{2}, da dobite 2.
\frac{1}{2}
Zmanjšajte ulomek \frac{2}{4} na najmanjši imenovalec tako, da izpeljete in okrajšate 2.