Ovrednoti
\frac{n^{2}+n-1}{n\left(n+1\right)}
Razširi
\frac{n^{2}+n-1}{n\left(n+1\right)}
Delež
Kopirano v odložišče
\frac{\left(2n^{2}-n-1\right)n}{2n\left(n+1\right)}-\frac{\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik 2\left(n+1\right) in 2n je 2n\left(n+1\right). Pomnožite \frac{2n^{2}-n-1}{2\left(n+1\right)} s/z \frac{n}{n}. Pomnožite \frac{2\left(n-1\right)^{2}-\left(n-1\right)-1}{2n} s/z \frac{n+1}{n+1}.
\frac{\left(2n^{2}-n-1\right)n-\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)}
Ker \frac{\left(2n^{2}-n-1\right)n}{2n\left(n+1\right)} in \frac{\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{2n^{3}-n^{2}-n-2n^{3}+2n^{2}+2n-2+n^{2}-1+n+1}{2n\left(n+1\right)}
Izvedi množenje v \left(2n^{2}-n-1\right)n-\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right).
\frac{2n^{2}+2n-2}{2n\left(n+1\right)}
Združite podobne člene v 2n^{3}-n^{2}-n-2n^{3}+2n^{2}+2n-2+n^{2}-1+n+1.
\frac{2\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{2n\left(n+1\right)}
Faktorizirajte izraze, ki še niso faktorizirani v \frac{2n^{2}+2n-2}{2n\left(n+1\right)}.
\frac{\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n\left(n+1\right)}
Okrajšaj 2 v števcu in imenovalcu.
\frac{\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n^{2}+n}
Razčlenite n\left(n+1\right).
\frac{\left(n+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n^{2}+n}
Če želite poiskati nasprotno vrednost za -\frac{1}{2}\sqrt{5}-\frac{1}{2}, poiščite nasprotno vrednost vsakega izraza.
\frac{\left(n+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(n-\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)}{n^{2}+n}
Če želite poiskati nasprotno vrednost za \frac{1}{2}\sqrt{5}-\frac{1}{2}, poiščite nasprotno vrednost vsakega izraza.
\frac{n^{2}+n-\frac{1}{4}\left(\sqrt{5}\right)^{2}+\frac{1}{4}}{n^{2}+n}
Uporabite lastnost distributivnosti za množenje n+\frac{1}{2}\sqrt{5}+\frac{1}{2} krat n-\frac{1}{2}\sqrt{5}+\frac{1}{2} in kombiniranje pogojev podobnosti.
\frac{n^{2}+n-\frac{1}{4}\times 5+\frac{1}{4}}{n^{2}+n}
Kvadrat vrednosti \sqrt{5} je 5.
\frac{n^{2}+n-\frac{5}{4}+\frac{1}{4}}{n^{2}+n}
Pomnožite -\frac{1}{4} in 5, da dobite -\frac{5}{4}.
\frac{n^{2}+n-1}{n^{2}+n}
Seštejte -\frac{5}{4} in \frac{1}{4}, da dobite -1.
\frac{\left(2n^{2}-n-1\right)n}{2n\left(n+1\right)}-\frac{\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik 2\left(n+1\right) in 2n je 2n\left(n+1\right). Pomnožite \frac{2n^{2}-n-1}{2\left(n+1\right)} s/z \frac{n}{n}. Pomnožite \frac{2\left(n-1\right)^{2}-\left(n-1\right)-1}{2n} s/z \frac{n+1}{n+1}.
\frac{\left(2n^{2}-n-1\right)n-\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)}
Ker \frac{\left(2n^{2}-n-1\right)n}{2n\left(n+1\right)} in \frac{\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{2n^{3}-n^{2}-n-2n^{3}+2n^{2}+2n-2+n^{2}-1+n+1}{2n\left(n+1\right)}
Izvedi množenje v \left(2n^{2}-n-1\right)n-\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right).
\frac{2n^{2}+2n-2}{2n\left(n+1\right)}
Združite podobne člene v 2n^{3}-n^{2}-n-2n^{3}+2n^{2}+2n-2+n^{2}-1+n+1.
\frac{2\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{2n\left(n+1\right)}
Faktorizirajte izraze, ki še niso faktorizirani v \frac{2n^{2}+2n-2}{2n\left(n+1\right)}.
\frac{\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n\left(n+1\right)}
Okrajšaj 2 v števcu in imenovalcu.
\frac{\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n^{2}+n}
Razčlenite n\left(n+1\right).
\frac{\left(n+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n^{2}+n}
Če želite poiskati nasprotno vrednost za -\frac{1}{2}\sqrt{5}-\frac{1}{2}, poiščite nasprotno vrednost vsakega izraza.
\frac{\left(n+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(n-\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)}{n^{2}+n}
Če želite poiskati nasprotno vrednost za \frac{1}{2}\sqrt{5}-\frac{1}{2}, poiščite nasprotno vrednost vsakega izraza.
\frac{n^{2}+n-\frac{1}{4}\left(\sqrt{5}\right)^{2}+\frac{1}{4}}{n^{2}+n}
Uporabite lastnost distributivnosti za množenje n+\frac{1}{2}\sqrt{5}+\frac{1}{2} krat n-\frac{1}{2}\sqrt{5}+\frac{1}{2} in kombiniranje pogojev podobnosti.
\frac{n^{2}+n-\frac{1}{4}\times 5+\frac{1}{4}}{n^{2}+n}
Kvadrat vrednosti \sqrt{5} je 5.
\frac{n^{2}+n-\frac{5}{4}+\frac{1}{4}}{n^{2}+n}
Pomnožite -\frac{1}{4} in 5, da dobite -\frac{5}{4}.
\frac{n^{2}+n-1}{n^{2}+n}
Seštejte -\frac{5}{4} in \frac{1}{4}, da dobite -1.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}