Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Razširi
Tick mark Image

Podobne težave pri spletnem iskanju

Delež

\frac{\left(2n^{2}-n-1\right)n}{2n\left(n+1\right)}-\frac{\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik 2\left(n+1\right) in 2n je 2n\left(n+1\right). Pomnožite \frac{2n^{2}-n-1}{2\left(n+1\right)} s/z \frac{n}{n}. Pomnožite \frac{2\left(n-1\right)^{2}-\left(n-1\right)-1}{2n} s/z \frac{n+1}{n+1}.
\frac{\left(2n^{2}-n-1\right)n-\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)}
Ker \frac{\left(2n^{2}-n-1\right)n}{2n\left(n+1\right)} in \frac{\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{2n^{3}-n^{2}-n-2n^{3}+2n^{2}+2n-2+n^{2}-1+n+1}{2n\left(n+1\right)}
Izvedi množenje v \left(2n^{2}-n-1\right)n-\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right).
\frac{2n^{2}+2n-2}{2n\left(n+1\right)}
Združite podobne člene v 2n^{3}-n^{2}-n-2n^{3}+2n^{2}+2n-2+n^{2}-1+n+1.
\frac{2\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{2n\left(n+1\right)}
Faktorizirajte izraze, ki še niso faktorizirani v \frac{2n^{2}+2n-2}{2n\left(n+1\right)}.
\frac{\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n\left(n+1\right)}
Okrajšaj 2 v števcu in imenovalcu.
\frac{\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n^{2}+n}
Razčlenite n\left(n+1\right).
\frac{\left(n+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n^{2}+n}
Če želite poiskati nasprotno vrednost za -\frac{1}{2}\sqrt{5}-\frac{1}{2}, poiščite nasprotno vrednost vsakega izraza.
\frac{\left(n+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(n-\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)}{n^{2}+n}
Če želite poiskati nasprotno vrednost za \frac{1}{2}\sqrt{5}-\frac{1}{2}, poiščite nasprotno vrednost vsakega izraza.
\frac{n^{2}+n-\frac{1}{4}\left(\sqrt{5}\right)^{2}+\frac{1}{4}}{n^{2}+n}
Uporabite lastnost distributivnosti za množenje n+\frac{1}{2}\sqrt{5}+\frac{1}{2} krat n-\frac{1}{2}\sqrt{5}+\frac{1}{2} in kombiniranje pogojev podobnosti.
\frac{n^{2}+n-\frac{1}{4}\times 5+\frac{1}{4}}{n^{2}+n}
Kvadrat vrednosti \sqrt{5} je 5.
\frac{n^{2}+n-\frac{5}{4}+\frac{1}{4}}{n^{2}+n}
Pomnožite -\frac{1}{4} in 5, da dobite -\frac{5}{4}.
\frac{n^{2}+n-1}{n^{2}+n}
Seštejte -\frac{5}{4} in \frac{1}{4}, da dobite -1.
\frac{\left(2n^{2}-n-1\right)n}{2n\left(n+1\right)}-\frac{\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik 2\left(n+1\right) in 2n je 2n\left(n+1\right). Pomnožite \frac{2n^{2}-n-1}{2\left(n+1\right)} s/z \frac{n}{n}. Pomnožite \frac{2\left(n-1\right)^{2}-\left(n-1\right)-1}{2n} s/z \frac{n+1}{n+1}.
\frac{\left(2n^{2}-n-1\right)n-\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)}
Ker \frac{\left(2n^{2}-n-1\right)n}{2n\left(n+1\right)} in \frac{\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{2n^{3}-n^{2}-n-2n^{3}+2n^{2}+2n-2+n^{2}-1+n+1}{2n\left(n+1\right)}
Izvedi množenje v \left(2n^{2}-n-1\right)n-\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right).
\frac{2n^{2}+2n-2}{2n\left(n+1\right)}
Združite podobne člene v 2n^{3}-n^{2}-n-2n^{3}+2n^{2}+2n-2+n^{2}-1+n+1.
\frac{2\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{2n\left(n+1\right)}
Faktorizirajte izraze, ki še niso faktorizirani v \frac{2n^{2}+2n-2}{2n\left(n+1\right)}.
\frac{\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n\left(n+1\right)}
Okrajšaj 2 v števcu in imenovalcu.
\frac{\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n^{2}+n}
Razčlenite n\left(n+1\right).
\frac{\left(n+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n^{2}+n}
Če želite poiskati nasprotno vrednost za -\frac{1}{2}\sqrt{5}-\frac{1}{2}, poiščite nasprotno vrednost vsakega izraza.
\frac{\left(n+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(n-\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)}{n^{2}+n}
Če želite poiskati nasprotno vrednost za \frac{1}{2}\sqrt{5}-\frac{1}{2}, poiščite nasprotno vrednost vsakega izraza.
\frac{n^{2}+n-\frac{1}{4}\left(\sqrt{5}\right)^{2}+\frac{1}{4}}{n^{2}+n}
Uporabite lastnost distributivnosti za množenje n+\frac{1}{2}\sqrt{5}+\frac{1}{2} krat n-\frac{1}{2}\sqrt{5}+\frac{1}{2} in kombiniranje pogojev podobnosti.
\frac{n^{2}+n-\frac{1}{4}\times 5+\frac{1}{4}}{n^{2}+n}
Kvadrat vrednosti \sqrt{5} je 5.
\frac{n^{2}+n-\frac{5}{4}+\frac{1}{4}}{n^{2}+n}
Pomnožite -\frac{1}{4} in 5, da dobite -\frac{5}{4}.
\frac{n^{2}+n-1}{n^{2}+n}
Seštejte -\frac{5}{4} in \frac{1}{4}, da dobite -1.