Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Razširi
Tick mark Image
Graf

Podobne težave pri spletnem iskanju

Delež

\frac{2x}{\left(x-1\right)x^{2}}-\frac{5}{\left(x-1\right)x^{2}}+\frac{3}{\left(x-1\right)\left(x+1\right)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik x\left(x-1\right) in x^{2}\left(x-1\right) je \left(x-1\right)x^{2}. Pomnožite \frac{2}{x\left(x-1\right)} s/z \frac{x}{x}.
\frac{2x-5}{\left(x-1\right)x^{2}}+\frac{3}{\left(x-1\right)\left(x+1\right)}
Ker \frac{2x}{\left(x-1\right)x^{2}} in \frac{5}{\left(x-1\right)x^{2}} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{\left(2x-5\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)x^{2}}+\frac{3x^{2}}{\left(x-1\right)\left(x+1\right)x^{2}}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik \left(x-1\right)x^{2} in \left(x-1\right)\left(x+1\right) je \left(x-1\right)\left(x+1\right)x^{2}. Pomnožite \frac{2x-5}{\left(x-1\right)x^{2}} s/z \frac{x+1}{x+1}. Pomnožite \frac{3}{\left(x-1\right)\left(x+1\right)} s/z \frac{x^{2}}{x^{2}}.
\frac{\left(2x-5\right)\left(x+1\right)+3x^{2}}{\left(x-1\right)\left(x+1\right)x^{2}}
\frac{\left(2x-5\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)x^{2}} in \frac{3x^{2}}{\left(x-1\right)\left(x+1\right)x^{2}} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{2x^{2}+2x-5x-5+3x^{2}}{\left(x-1\right)\left(x+1\right)x^{2}}
Izvedi množenje v \left(2x-5\right)\left(x+1\right)+3x^{2}.
\frac{5x^{2}-3x-5}{\left(x-1\right)\left(x+1\right)x^{2}}
Združite podobne člene v 2x^{2}+2x-5x-5+3x^{2}.
\frac{5x^{2}-3x-5}{x^{4}-x^{2}}
Razčlenite \left(x-1\right)\left(x+1\right)x^{2}.
\frac{2x}{\left(x-1\right)x^{2}}-\frac{5}{\left(x-1\right)x^{2}}+\frac{3}{\left(x-1\right)\left(x+1\right)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik x\left(x-1\right) in x^{2}\left(x-1\right) je \left(x-1\right)x^{2}. Pomnožite \frac{2}{x\left(x-1\right)} s/z \frac{x}{x}.
\frac{2x-5}{\left(x-1\right)x^{2}}+\frac{3}{\left(x-1\right)\left(x+1\right)}
Ker \frac{2x}{\left(x-1\right)x^{2}} in \frac{5}{\left(x-1\right)x^{2}} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{\left(2x-5\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)x^{2}}+\frac{3x^{2}}{\left(x-1\right)\left(x+1\right)x^{2}}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik \left(x-1\right)x^{2} in \left(x-1\right)\left(x+1\right) je \left(x-1\right)\left(x+1\right)x^{2}. Pomnožite \frac{2x-5}{\left(x-1\right)x^{2}} s/z \frac{x+1}{x+1}. Pomnožite \frac{3}{\left(x-1\right)\left(x+1\right)} s/z \frac{x^{2}}{x^{2}}.
\frac{\left(2x-5\right)\left(x+1\right)+3x^{2}}{\left(x-1\right)\left(x+1\right)x^{2}}
\frac{\left(2x-5\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)x^{2}} in \frac{3x^{2}}{\left(x-1\right)\left(x+1\right)x^{2}} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{2x^{2}+2x-5x-5+3x^{2}}{\left(x-1\right)\left(x+1\right)x^{2}}
Izvedi množenje v \left(2x-5\right)\left(x+1\right)+3x^{2}.
\frac{5x^{2}-3x-5}{\left(x-1\right)\left(x+1\right)x^{2}}
Združite podobne člene v 2x^{2}+2x-5x-5+3x^{2}.
\frac{5x^{2}-3x-5}{x^{4}-x^{2}}
Razčlenite \left(x-1\right)\left(x+1\right)x^{2}.