Rešitev za x
x=-1000
x=750
Graf
Delež
Kopirano v odložišče
\left(2x+500\right)\times 1500-2x\times 1500=x\left(x+250\right)
Spremenljivka x ne more biti enaka nobeni od vrednosti -250,0, ker deljenje z vrednostjo nič ni določeno. Pomnožite obe strani enačbe z 2x\left(x+250\right), najmanjšim skupnim mnogokratnikom števila x,x+250,2.
3000x+750000-2x\times 1500=x\left(x+250\right)
Uporabite distributivnost, da pomnožite 2x+500 s/z 1500.
3000x+750000-3000x=x\left(x+250\right)
Pomnožite 2 in 1500, da dobite 3000.
3000x+750000-3000x=x^{2}+250x
Uporabite distributivnost, da pomnožite x s/z x+250.
3000x+750000-3000x-x^{2}=250x
Odštejte x^{2} na obeh straneh.
3000x+750000-3000x-x^{2}-250x=0
Odštejte 250x na obeh straneh.
2750x+750000-3000x-x^{2}=0
Združite 3000x in -250x, da dobite 2750x.
-250x+750000-x^{2}=0
Združite 2750x in -3000x, da dobite -250x.
-x^{2}-250x+750000=0
Prerazporedite polinom tako, da jo pretvorite v standardno obliko. Premaknite člene v vrstnem redu od najvišje do najnižje potence.
a+b=-250 ab=-750000=-750000
Če želite rešiti enačbo, faktor levo roko po združiti. Najprej, na levi strani mora biti uporabnika kot -x^{2}+ax+bx+750000. Če želite poiskati a in b, nastavite sistem tako, da bo rešena.
1,-750000 2,-375000 3,-250000 4,-187500 5,-150000 6,-125000 8,-93750 10,-75000 12,-62500 15,-50000 16,-46875 20,-37500 24,-31250 25,-30000 30,-25000 40,-18750 48,-15625 50,-15000 60,-12500 75,-10000 80,-9375 100,-7500 120,-6250 125,-6000 150,-5000 200,-3750 240,-3125 250,-3000 300,-2500 375,-2000 400,-1875 500,-1500 600,-1250 625,-1200 750,-1000
Ker je ab negativen, a in b imajo nenegativno vrednost. a+b je negativno, negativna številka pa je večja absolutna vrednost kot pozitivna. Navedite vse takšne pare celega števila, ki nudijo -750000 izdelka.
1-750000=-749999 2-375000=-374998 3-250000=-249997 4-187500=-187496 5-150000=-149995 6-125000=-124994 8-93750=-93742 10-75000=-74990 12-62500=-62488 15-50000=-49985 16-46875=-46859 20-37500=-37480 24-31250=-31226 25-30000=-29975 30-25000=-24970 40-18750=-18710 48-15625=-15577 50-15000=-14950 60-12500=-12440 75-10000=-9925 80-9375=-9295 100-7500=-7400 120-6250=-6130 125-6000=-5875 150-5000=-4850 200-3750=-3550 240-3125=-2885 250-3000=-2750 300-2500=-2200 375-2000=-1625 400-1875=-1475 500-1500=-1000 600-1250=-650 625-1200=-575 750-1000=-250
Izračunajte vsoto za vsak par.
a=-750 b=1000
Rešitev je par, ki zagotavlja vsoto 250.
\left(-x^{2}-750x\right)+\left(1000x+750000\right)
Znova zapišite -x^{2}-250x+750000 kot \left(-x^{2}-750x\right)+\left(1000x+750000\right).
x\left(x-750\right)+1000\left(x-750\right)
Faktor x v prvem in 1000 v drugi skupini.
\left(x-750\right)\left(x+1000\right)
Faktor skupnega člena x-750 z uporabo lastnosti distributivnosti.
x=750 x=-1000
Če želite poiskati rešitve za enačbe, rešite x-750=0 in x+1000=0.
\left(2x+500\right)\times 1500-2x\times 1500=x\left(x+250\right)
Spremenljivka x ne more biti enaka nobeni od vrednosti -250,0, ker deljenje z vrednostjo nič ni določeno. Pomnožite obe strani enačbe z 2x\left(x+250\right), najmanjšim skupnim mnogokratnikom števila x,x+250,2.
3000x+750000-2x\times 1500=x\left(x+250\right)
Uporabite distributivnost, da pomnožite 2x+500 s/z 1500.
3000x+750000-3000x=x\left(x+250\right)
Pomnožite 2 in 1500, da dobite 3000.
3000x+750000-3000x=x^{2}+250x
Uporabite distributivnost, da pomnožite x s/z x+250.
3000x+750000-3000x-x^{2}=250x
Odštejte x^{2} na obeh straneh.
3000x+750000-3000x-x^{2}-250x=0
Odštejte 250x na obeh straneh.
2750x+750000-3000x-x^{2}=0
Združite 3000x in -250x, da dobite 2750x.
-250x+750000-x^{2}=0
Združite 2750x in -3000x, da dobite -250x.
-x^{2}-250x+750000=0
Vse enačbe v obliki ax^{2}+bx+c=0 lahko rešite s formulo za reševanje kvadratnih enačb: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula za reševanje kvadratnih enačb ponudi dve rešitvi: eno, če je ± seštevanje, in drugo, če je odštevanje.
x=\frac{-\left(-250\right)±\sqrt{\left(-250\right)^{2}-4\left(-1\right)\times 750000}}{2\left(-1\right)}
Ta enačba je v standardni obliki: ax^{2}+bx+c=0. Vstavite -1 za a, -250 za b in 750000 za c v formulo za reševanje kvadratnih enačb \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-250\right)±\sqrt{62500-4\left(-1\right)\times 750000}}{2\left(-1\right)}
Kvadrat števila -250.
x=\frac{-\left(-250\right)±\sqrt{62500+4\times 750000}}{2\left(-1\right)}
Pomnožite -4 s/z -1.
x=\frac{-\left(-250\right)±\sqrt{62500+3000000}}{2\left(-1\right)}
Pomnožite 4 s/z 750000.
x=\frac{-\left(-250\right)±\sqrt{3062500}}{2\left(-1\right)}
Seštejte 62500 in 3000000.
x=\frac{-\left(-250\right)±1750}{2\left(-1\right)}
Uporabite kvadratni koren števila 3062500.
x=\frac{250±1750}{2\left(-1\right)}
Nasprotna vrednost -250 je 250.
x=\frac{250±1750}{-2}
Pomnožite 2 s/z -1.
x=\frac{2000}{-2}
Zdaj rešite enačbo x=\frac{250±1750}{-2}, ko je ± plus. Seštejte 250 in 1750.
x=-1000
Delite 2000 s/z -2.
x=-\frac{1500}{-2}
Zdaj rešite enačbo x=\frac{250±1750}{-2}, ko je ± minus. Odštejte 1750 od 250.
x=750
Delite -1500 s/z -2.
x=-1000 x=750
Enačba je zdaj rešena.
\left(2x+500\right)\times 1500-2x\times 1500=x\left(x+250\right)
Spremenljivka x ne more biti enaka nobeni od vrednosti -250,0, ker deljenje z vrednostjo nič ni določeno. Pomnožite obe strani enačbe z 2x\left(x+250\right), najmanjšim skupnim mnogokratnikom števila x,x+250,2.
3000x+750000-2x\times 1500=x\left(x+250\right)
Uporabite distributivnost, da pomnožite 2x+500 s/z 1500.
3000x+750000-3000x=x\left(x+250\right)
Pomnožite 2 in 1500, da dobite 3000.
3000x+750000-3000x=x^{2}+250x
Uporabite distributivnost, da pomnožite x s/z x+250.
3000x+750000-3000x-x^{2}=250x
Odštejte x^{2} na obeh straneh.
3000x+750000-3000x-x^{2}-250x=0
Odštejte 250x na obeh straneh.
2750x+750000-3000x-x^{2}=0
Združite 3000x in -250x, da dobite 2750x.
2750x-3000x-x^{2}=-750000
Odštejte 750000 na obeh straneh. Če katero koli število odštejete od nič, dobite negativno vrednost števila.
-250x-x^{2}=-750000
Združite 2750x in -3000x, da dobite -250x.
-x^{2}-250x=-750000
Kvadratne enačbe, kot je ta, lahko rešite z dopolnjevanjem do popolnega kvadrata. Za dopolnjevanje do popolnega kvadrata morate enačbo najprej pretvoriti v obliko x^{2}+bx=c.
\frac{-x^{2}-250x}{-1}=-\frac{750000}{-1}
Delite obe strani z vrednostjo -1.
x^{2}+\left(-\frac{250}{-1}\right)x=-\frac{750000}{-1}
Z deljenjem s/z -1 razveljavite množenje s/z -1.
x^{2}+250x=-\frac{750000}{-1}
Delite -250 s/z -1.
x^{2}+250x=750000
Delite -750000 s/z -1.
x^{2}+250x+125^{2}=750000+125^{2}
Delite 250, ki je koeficient člena x, z 2, da dobite 125. Nato dodajte kvadrat števila 125 na obe strani enačbe. S tem korakom boste levo stran enačbe pretvorili v popolni kvadrat.
x^{2}+250x+15625=750000+15625
Kvadrat števila 125.
x^{2}+250x+15625=765625
Seštejte 750000 in 15625.
\left(x+125\right)^{2}=765625
Faktorizirajte x^{2}+250x+15625. Če je x^{2}+bx+c kvadrat, ga lahko vedno faktorizirate kot \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+125\right)^{2}}=\sqrt{765625}
Uporabite kvadratni koren obeh strani enačbe.
x+125=875 x+125=-875
Poenostavite.
x=750 x=-1000
Odštejte 125 na obeh straneh enačbe.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}