Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Odvajajte w.r.t. x
Tick mark Image
Graf

Podobne težave pri spletnem iskanju

Delež

\frac{1}{\left(x-3\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Faktorizirajte x^{2}-5x+6. Faktorizirajte x^{2}-3x+2.
\frac{x-1}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}+\frac{x-3}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik \left(x-3\right)\left(x-2\right) in \left(x-2\right)\left(x-1\right) je \left(x-3\right)\left(x-2\right)\left(x-1\right). Pomnožite \frac{1}{\left(x-3\right)\left(x-2\right)} s/z \frac{x-1}{x-1}. Pomnožite \frac{1}{\left(x-2\right)\left(x-1\right)} s/z \frac{x-3}{x-3}.
\frac{x-1+x-3}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
\frac{x-1}{\left(x-3\right)\left(x-2\right)\left(x-1\right)} in \frac{x-3}{\left(x-3\right)\left(x-2\right)\left(x-1\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{2x-4}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Združite podobne člene v x-1+x-3.
\frac{2\left(x-2\right)}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Faktorizirajte izraze, ki še niso faktorizirani v \frac{2x-4}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}.
\frac{2}{\left(x-3\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Okrajšaj x-2 v števcu in imenovalcu.
\frac{2}{\left(x-3\right)\left(x-1\right)}+\frac{2}{\left(x-5\right)\left(x-3\right)}
Faktorizirajte x^{2}-8x+15.
\frac{2\left(x-5\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}+\frac{2\left(x-1\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik \left(x-3\right)\left(x-1\right) in \left(x-5\right)\left(x-3\right) je \left(x-5\right)\left(x-3\right)\left(x-1\right). Pomnožite \frac{2}{\left(x-3\right)\left(x-1\right)} s/z \frac{x-5}{x-5}. Pomnožite \frac{2}{\left(x-5\right)\left(x-3\right)} s/z \frac{x-1}{x-1}.
\frac{2\left(x-5\right)+2\left(x-1\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}
\frac{2\left(x-5\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)} in \frac{2\left(x-1\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{2x-10+2x-2}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}
Izvedi množenje v 2\left(x-5\right)+2\left(x-1\right).
\frac{4x-12}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}
Združite podobne člene v 2x-10+2x-2.
\frac{4\left(x-3\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}
Faktorizirajte izraze, ki še niso faktorizirani v \frac{4x-12}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}.
\frac{4}{\left(x-5\right)\left(x-1\right)}
Okrajšaj x-3 v števcu in imenovalcu.
\frac{4}{x^{2}-6x+5}
Razčlenite \left(x-5\right)\left(x-1\right).