Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Odvajajte w.r.t. x
Tick mark Image
Graf

Podobne težave pri spletnem iskanju

Delež

\frac{1}{\left(x-1\right)\left(x+1\right)}-\frac{2}{\left(x-1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Faktorizirajte x^{2}-1. Faktorizirajte x^{2}+3x-4.
\frac{x+4}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}-\frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik \left(x-1\right)\left(x+1\right) in \left(x-1\right)\left(x+4\right) je \left(x-1\right)\left(x+1\right)\left(x+4\right). Pomnožite \frac{1}{\left(x-1\right)\left(x+1\right)} s/z \frac{x+4}{x+4}. Pomnožite \frac{2}{\left(x-1\right)\left(x+4\right)} s/z \frac{x+1}{x+1}.
\frac{x+4-2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Ker \frac{x+4}{\left(x-1\right)\left(x+1\right)\left(x+4\right)} in \frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+4\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{x+4-2x-2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Izvedi množenje v x+4-2\left(x+1\right).
\frac{-x+2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Združite podobne člene v x+4-2x-2.
\frac{-x+2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{\left(x-3\right)\left(x+1\right)}
Faktorizirajte x^{2}-2x-3.
\frac{\left(-x+2\right)\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{\left(x-1\right)\left(x+4\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik \left(x-1\right)\left(x+1\right)\left(x+4\right) in \left(x-3\right)\left(x+1\right) je \left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right). Pomnožite \frac{-x+2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)} s/z \frac{x-3}{x-3}. Pomnožite \frac{1}{\left(x-3\right)\left(x+1\right)} s/z \frac{\left(x-1\right)\left(x+4\right)}{\left(x-1\right)\left(x+4\right)}.
\frac{\left(-x+2\right)\left(x-3\right)+\left(x-1\right)\left(x+4\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
\frac{\left(-x+2\right)\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)} in \frac{\left(x-1\right)\left(x+4\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{-x^{2}+3x+2x-6+x^{2}+4x-x-4}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
Izvedi množenje v \left(-x+2\right)\left(x-3\right)+\left(x-1\right)\left(x+4\right).
\frac{8x-10}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
Združite podobne člene v -x^{2}+3x+2x-6+x^{2}+4x-x-4.
\frac{8x-10}{x^{4}+x^{3}-13x^{2}-x+12}
Razčlenite \left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right).