Ovrednoti
\frac{3}{\left(x+1\right)\left(x+7\right)}
Odvajajte w.r.t. x
\frac{6\left(-x-4\right)}{\left(\left(x+1\right)\left(x+7\right)\right)^{2}}
Graf
Delež
Kopirano v odložišče
\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
Faktorizirajte x^{2}+4x+3. Faktorizirajte x^{2}+8x+15.
\frac{x+5}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{x+1}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik \left(x+1\right)\left(x+3\right) in \left(x+3\right)\left(x+5\right) je \left(x+1\right)\left(x+3\right)\left(x+5\right). Pomnožite \frac{1}{\left(x+1\right)\left(x+3\right)} s/z \frac{x+5}{x+5}. Pomnožite \frac{1}{\left(x+3\right)\left(x+5\right)} s/z \frac{x+1}{x+1}.
\frac{x+5+x+1}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
\frac{x+5}{\left(x+1\right)\left(x+3\right)\left(x+5\right)} in \frac{x+1}{\left(x+1\right)\left(x+3\right)\left(x+5\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{2x+6}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
Združite podobne člene v x+5+x+1.
\frac{2\left(x+3\right)}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
Faktorizirajte izraze, ki še niso faktorizirani v \frac{2x+6}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}.
\frac{2}{\left(x+1\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
Okrajšaj x+3 v števcu in imenovalcu.
\frac{2}{\left(x+1\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}
Faktorizirajte x^{2}+12x+35.
\frac{2\left(x+7\right)}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}+\frac{x+1}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik \left(x+1\right)\left(x+5\right) in \left(x+5\right)\left(x+7\right) je \left(x+1\right)\left(x+5\right)\left(x+7\right). Pomnožite \frac{2}{\left(x+1\right)\left(x+5\right)} s/z \frac{x+7}{x+7}. Pomnožite \frac{1}{\left(x+5\right)\left(x+7\right)} s/z \frac{x+1}{x+1}.
\frac{2\left(x+7\right)+x+1}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}
\frac{2\left(x+7\right)}{\left(x+1\right)\left(x+5\right)\left(x+7\right)} in \frac{x+1}{\left(x+1\right)\left(x+5\right)\left(x+7\right)} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{2x+14+x+1}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}
Izvedi množenje v 2\left(x+7\right)+x+1.
\frac{3x+15}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}
Združite podobne člene v 2x+14+x+1.
\frac{3\left(x+5\right)}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}
Faktorizirajte izraze, ki še niso faktorizirani v \frac{3x+15}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}.
\frac{3}{\left(x+1\right)\left(x+7\right)}
Okrajšaj x+5 v števcu in imenovalcu.
\frac{3}{x^{2}+8x+7}
Razčlenite \left(x+1\right)\left(x+7\right).
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}