Rešitev za x
x=3
x=0
Graf
Delež
Kopirano v odložišče
x\left(\frac{1}{2}x-\frac{3}{2}\right)=0
Faktorizirajte x.
x=0 x=3
Če želite poiskati rešitve za enačbe, rešite x=0 in \frac{x-3}{2}=0.
\frac{1}{2}x^{2}-\frac{3}{2}x=0
Vse enačbe v obliki ax^{2}+bx+c=0 lahko rešite s formulo za reševanje kvadratnih enačb: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula za reševanje kvadratnih enačb ponudi dve rešitvi: eno, če je ± seštevanje, in drugo, če je odštevanje.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\left(-\frac{3}{2}\right)^{2}}}{2\times \frac{1}{2}}
Ta enačba je v standardni obliki: ax^{2}+bx+c=0. Vstavite \frac{1}{2} za a, -\frac{3}{2} za b in 0 za c v formulo za reševanje kvadratnih enačb \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{3}{2}\right)±\frac{3}{2}}{2\times \frac{1}{2}}
Uporabite kvadratni koren števila \left(-\frac{3}{2}\right)^{2}.
x=\frac{\frac{3}{2}±\frac{3}{2}}{2\times \frac{1}{2}}
Nasprotna vrednost -\frac{3}{2} je \frac{3}{2}.
x=\frac{\frac{3}{2}±\frac{3}{2}}{1}
Pomnožite 2 s/z \frac{1}{2}.
x=\frac{3}{1}
Zdaj rešite enačbo x=\frac{\frac{3}{2}±\frac{3}{2}}{1}, ko je ± plus. Seštejte \frac{3}{2} in \frac{3}{2} tako, da poiščete skupni imenovalec in seštejete števce. Nato okrajšajte ulomek do najnižjih možnih členov.
x=3
Delite 3 s/z 1.
x=\frac{0}{1}
Zdaj rešite enačbo x=\frac{\frac{3}{2}±\frac{3}{2}}{1}, ko je ± minus. Odštejte \frac{3}{2} od \frac{3}{2} tako, da poiščete skupni imenovalec in odštejete števce. Nato okrajšajte ulomek na najnižje člene, če je mogoče.
x=0
Delite 0 s/z 1.
x=3 x=0
Enačba je zdaj rešena.
\frac{1}{2}x^{2}-\frac{3}{2}x=0
Kvadratne enačbe, kot je ta, lahko rešite z dopolnjevanjem do popolnega kvadrata. Za dopolnjevanje do popolnega kvadrata morate enačbo najprej pretvoriti v obliko x^{2}+bx=c.
\frac{\frac{1}{2}x^{2}-\frac{3}{2}x}{\frac{1}{2}}=\frac{0}{\frac{1}{2}}
Pomnožite obe strani z vrednostjo 2.
x^{2}+\left(-\frac{\frac{3}{2}}{\frac{1}{2}}\right)x=\frac{0}{\frac{1}{2}}
Z deljenjem s/z \frac{1}{2} razveljavite množenje s/z \frac{1}{2}.
x^{2}-3x=\frac{0}{\frac{1}{2}}
Delite -\frac{3}{2} s/z \frac{1}{2} tako, da pomnožite -\frac{3}{2} z obratno vrednostjo \frac{1}{2}.
x^{2}-3x=0
Delite 0 s/z \frac{1}{2} tako, da pomnožite 0 z obratno vrednostjo \frac{1}{2}.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\left(-\frac{3}{2}\right)^{2}
Delite -3, ki je koeficient člena x, z 2, da dobite -\frac{3}{2}. Nato dodajte kvadrat števila -\frac{3}{2} na obe strani enačbe. S tem korakom boste levo stran enačbe pretvorili v popolni kvadrat.
x^{2}-3x+\frac{9}{4}=\frac{9}{4}
Kvadrirajte ulomek -\frac{3}{2} tako, da kvadrirate števec in imenovalec ulomka.
\left(x-\frac{3}{2}\right)^{2}=\frac{9}{4}
Faktorizirajte x^{2}-3x+\frac{9}{4}. Če je x^{2}+bx+c kvadrat, ga lahko vedno faktorizirate kot \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Uporabite kvadratni koren obeh strani enačbe.
x-\frac{3}{2}=\frac{3}{2} x-\frac{3}{2}=-\frac{3}{2}
Poenostavite.
x=3 x=0
Prištejte \frac{3}{2} na obe strani enačbe.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}