Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Razširi
Tick mark Image
Graf

Podobne težave pri spletnem iskanju

Delež

\frac{x^{2}+7x+12}{\left(x+1\right)\left(x-1\right)}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Uporabite lastnost distributivnosti za množenje x+3 krat x+4 in kombiniranje pogojev podobnosti.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Razmislite o \left(x+1\right)\left(x-1\right). Množenje je lahko preoblikovano v razliko kvadratov s pravilom: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Kvadrat števila 1.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Uporabite distributivnost, da pomnožite x^{2} s/z 1+x.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3x+9}
Uporabite distributivnost, da pomnožite 3 s/z x+3.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)}\times \frac{x-1}{3x+9}
Pomnožite \frac{x^{2}+7x+12}{x^{2}-1} s/z \frac{x^{2}+x^{3}}{x+4} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)\left(x-1\right)}{\left(x^{2}-1\right)\left(x+4\right)\left(3x+9\right)}
Pomnožite \frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)} s/z \frac{x-1}{3x+9} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)x^{2}}{3\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)}
Faktorizirajte izraze, ki še niso faktorizirani.
\frac{x^{2}}{3}
Okrajšaj \left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right) v števcu in imenovalcu.
\frac{x^{2}+7x+12}{\left(x+1\right)\left(x-1\right)}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Uporabite lastnost distributivnosti za množenje x+3 krat x+4 in kombiniranje pogojev podobnosti.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Razmislite o \left(x+1\right)\left(x-1\right). Množenje je lahko preoblikovano v razliko kvadratov s pravilom: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Kvadrat števila 1.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Uporabite distributivnost, da pomnožite x^{2} s/z 1+x.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3x+9}
Uporabite distributivnost, da pomnožite 3 s/z x+3.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)}\times \frac{x-1}{3x+9}
Pomnožite \frac{x^{2}+7x+12}{x^{2}-1} s/z \frac{x^{2}+x^{3}}{x+4} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)\left(x-1\right)}{\left(x^{2}-1\right)\left(x+4\right)\left(3x+9\right)}
Pomnožite \frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)} s/z \frac{x-1}{3x+9} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)x^{2}}{3\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)}
Faktorizirajte izraze, ki še niso faktorizirani.
\frac{x^{2}}{3}
Okrajšaj \left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right) v števcu in imenovalcu.