Preskoči na glavno vsebino
Ovrednoti
Tick mark Image

Podobne težave pri spletnem iskanju

Delež

\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{\left(3\sqrt{5}+2\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}
Racionalizirajte imenovalec \frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)}{3\sqrt{5}+2\sqrt{2}} tako, da pomnožite števec in imenovalec s 3\sqrt{5}-2\sqrt{2}.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{\left(3\sqrt{5}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
Razmislite o \left(3\sqrt{5}+2\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right). Množenje je lahko preoblikovano v razliko kvadratov s pravilom: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{3^{2}\left(\sqrt{5}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
Razčlenite \left(3\sqrt{5}\right)^{2}.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{9\left(\sqrt{5}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
Izračunajte potenco 3 števila 2, da dobite 9.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{9\times 5-\left(2\sqrt{2}\right)^{2}}
Kvadrat vrednosti \sqrt{5} je 5.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-\left(2\sqrt{2}\right)^{2}}
Pomnožite 9 in 5, da dobite 45.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-2^{2}\left(\sqrt{2}\right)^{2}}
Razčlenite \left(2\sqrt{2}\right)^{2}.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-4\left(\sqrt{2}\right)^{2}}
Izračunajte potenco 2 števila 2, da dobite 4.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-4\times 2}
Kvadrat vrednosti \sqrt{2} je 2.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-8}
Pomnožite 4 in 2, da dobite 8.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Odštejte 8 od 45, da dobite 37.
\frac{\left(3\left(\sqrt{5}\right)^{2}+\sqrt{5}\sqrt{2}-3\sqrt{2}\sqrt{5}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Uporabite distributivnost tako, da pomnožite vsako vrednost \sqrt{5}-\sqrt{2} z vsako vrednostjo 3\sqrt{5}+\sqrt{2}.
\frac{\left(3\times 5+\sqrt{5}\sqrt{2}-3\sqrt{2}\sqrt{5}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Kvadrat vrednosti \sqrt{5} je 5.
\frac{\left(15+\sqrt{5}\sqrt{2}-3\sqrt{2}\sqrt{5}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Pomnožite 3 in 5, da dobite 15.
\frac{\left(15+\sqrt{10}-3\sqrt{2}\sqrt{5}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Če želite \sqrt{5} pomnožite in \sqrt{2}, pomnožite številke v kvadratni korenu.
\frac{\left(15+\sqrt{10}-3\sqrt{10}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Če želite \sqrt{2} pomnožite in \sqrt{5}, pomnožite številke v kvadratni korenu.
\frac{\left(15-2\sqrt{10}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Združite \sqrt{10} in -3\sqrt{10}, da dobite -2\sqrt{10}.
\frac{\left(15-2\sqrt{10}-2\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Kvadrat vrednosti \sqrt{2} je 2.
\frac{\left(13-2\sqrt{10}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Odštejte 2 od 15, da dobite 13.
\frac{39\sqrt{5}-26\sqrt{2}-6\sqrt{10}\sqrt{5}+4\sqrt{2}\sqrt{10}}{37}
Uporabite distributivnost tako, da pomnožite vsako vrednost 13-2\sqrt{10} z vsako vrednostjo 3\sqrt{5}-2\sqrt{2}.
\frac{39\sqrt{5}-26\sqrt{2}-6\sqrt{5}\sqrt{2}\sqrt{5}+4\sqrt{2}\sqrt{10}}{37}
Faktorizirajte 10=5\times 2. Znova napišite kvadratni koren izdelka \sqrt{5\times 2} kot produkt kvadratnih korenov \sqrt{5}\sqrt{2}.
\frac{39\sqrt{5}-26\sqrt{2}-6\times 5\sqrt{2}+4\sqrt{2}\sqrt{10}}{37}
Pomnožite \sqrt{5} in \sqrt{5}, da dobite 5.
\frac{39\sqrt{5}-26\sqrt{2}-30\sqrt{2}+4\sqrt{2}\sqrt{10}}{37}
Pomnožite -6 in 5, da dobite -30.
\frac{39\sqrt{5}-56\sqrt{2}+4\sqrt{2}\sqrt{10}}{37}
Združite -26\sqrt{2} in -30\sqrt{2}, da dobite -56\sqrt{2}.
\frac{39\sqrt{5}-56\sqrt{2}+4\sqrt{2}\sqrt{2}\sqrt{5}}{37}
Faktorizirajte 10=2\times 5. Znova napišite kvadratni koren izdelka \sqrt{2\times 5} kot produkt kvadratnih korenov \sqrt{2}\sqrt{5}.
\frac{39\sqrt{5}-56\sqrt{2}+4\times 2\sqrt{5}}{37}
Pomnožite \sqrt{2} in \sqrt{2}, da dobite 2.
\frac{39\sqrt{5}-56\sqrt{2}+8\sqrt{5}}{37}
Pomnožite 4 in 2, da dobite 8.
\frac{47\sqrt{5}-56\sqrt{2}}{37}
Združite 39\sqrt{5} in 8\sqrt{5}, da dobite 47\sqrt{5}.