Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Razširi
Tick mark Image

Podobne težave pri spletnem iskanju

Delež

\frac{\frac{\left(n+2\right)^{3}}{\left(n-2\right)^{3}}}{\frac{n^{3}+4n^{2}+4n}{3n^{2}-12n+12}}\times \frac{n}{3}
Če želite dobiti potenco vrednosti \frac{n+2}{n-2}, potencirajte števec in imenovalec, nato pa delite.
\frac{\left(n+2\right)^{3}\left(3n^{2}-12n+12\right)}{\left(n-2\right)^{3}\left(n^{3}+4n^{2}+4n\right)}\times \frac{n}{3}
Delite \frac{\left(n+2\right)^{3}}{\left(n-2\right)^{3}} s/z \frac{n^{3}+4n^{2}+4n}{3n^{2}-12n+12} tako, da pomnožite \frac{\left(n+2\right)^{3}}{\left(n-2\right)^{3}} z obratno vrednostjo \frac{n^{3}+4n^{2}+4n}{3n^{2}-12n+12}.
\frac{3\left(n-2\right)^{2}\left(n+2\right)^{3}}{n\left(n+2\right)^{2}\left(n-2\right)^{3}}\times \frac{n}{3}
Faktorizirajte izraze, ki še niso faktorizirani v \frac{\left(n+2\right)^{3}\left(3n^{2}-12n+12\right)}{\left(n-2\right)^{3}\left(n^{3}+4n^{2}+4n\right)}.
\frac{3\left(n+2\right)}{n\left(n-2\right)}\times \frac{n}{3}
Okrajšaj \left(n-2\right)^{2}\left(n+2\right)^{2} v števcu in imenovalcu.
\frac{3\left(n+2\right)n}{n\left(n-2\right)\times 3}
Pomnožite \frac{3\left(n+2\right)}{n\left(n-2\right)} s/z \frac{n}{3} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{n+2}{n-2}
Okrajšaj 3n v števcu in imenovalcu.
\frac{\frac{\left(n+2\right)^{3}}{\left(n-2\right)^{3}}}{\frac{n^{3}+4n^{2}+4n}{3n^{2}-12n+12}}\times \frac{n}{3}
Če želite dobiti potenco vrednosti \frac{n+2}{n-2}, potencirajte števec in imenovalec, nato pa delite.
\frac{\left(n+2\right)^{3}\left(3n^{2}-12n+12\right)}{\left(n-2\right)^{3}\left(n^{3}+4n^{2}+4n\right)}\times \frac{n}{3}
Delite \frac{\left(n+2\right)^{3}}{\left(n-2\right)^{3}} s/z \frac{n^{3}+4n^{2}+4n}{3n^{2}-12n+12} tako, da pomnožite \frac{\left(n+2\right)^{3}}{\left(n-2\right)^{3}} z obratno vrednostjo \frac{n^{3}+4n^{2}+4n}{3n^{2}-12n+12}.
\frac{3\left(n-2\right)^{2}\left(n+2\right)^{3}}{n\left(n+2\right)^{2}\left(n-2\right)^{3}}\times \frac{n}{3}
Faktorizirajte izraze, ki še niso faktorizirani v \frac{\left(n+2\right)^{3}\left(3n^{2}-12n+12\right)}{\left(n-2\right)^{3}\left(n^{3}+4n^{2}+4n\right)}.
\frac{3\left(n+2\right)}{n\left(n-2\right)}\times \frac{n}{3}
Okrajšaj \left(n-2\right)^{2}\left(n+2\right)^{2} v števcu in imenovalcu.
\frac{3\left(n+2\right)n}{n\left(n-2\right)\times 3}
Pomnožite \frac{3\left(n+2\right)}{n\left(n-2\right)} s/z \frac{n}{3} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{n+2}{n-2}
Okrajšaj 3n v števcu in imenovalcu.