Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Faktoriziraj
Tick mark Image

Delež

\frac{\left(\frac{10}{9}\right)^{2}}{\left(1-\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Seštejte \frac{1}{3} in \frac{7}{9}, da dobite \frac{10}{9}.
\frac{\frac{100}{81}}{\left(1-\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Izračunajte potenco \frac{10}{9} števila 2, da dobite \frac{100}{81}.
\frac{\frac{100}{81}}{\left(\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Odštejte \frac{1}{2} od 1, da dobite \frac{1}{2}.
\frac{\frac{100}{81}}{\frac{1}{4}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Izračunajte potenco \frac{1}{2} števila 2, da dobite \frac{1}{4}.
\frac{\frac{100}{81}}{\frac{1}{4}\left(-8\right)-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Izračunajte potenco -2 števila 3, da dobite -8.
\frac{\frac{100}{81}}{-2-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Pomnožite \frac{1}{4} in -8, da dobite -2.
\frac{\frac{100}{81}}{-\frac{7}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Odštejte \frac{3}{2} od -2, da dobite -\frac{7}{2}.
\frac{100}{81}\left(-\frac{2}{7}\right)-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Delite \frac{100}{81} s/z -\frac{7}{2} tako, da pomnožite \frac{100}{81} z obratno vrednostjo -\frac{7}{2}.
-\frac{200}{567}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Pomnožite \frac{100}{81} in -\frac{2}{7}, da dobite -\frac{200}{567}.
-\frac{200}{567}-\frac{1}{36}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Izračunajte potenco -\frac{1}{6} števila 2, da dobite \frac{1}{36}.
-\frac{863}{2268}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Odštejte \frac{1}{36} od -\frac{200}{567}, da dobite -\frac{863}{2268}.
-\frac{863}{2268}+\frac{\frac{1}{20}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Odštejte \frac{1}{5} od \frac{1}{4}, da dobite \frac{1}{20}.
-\frac{863}{2268}+\frac{\frac{1}{20}}{\left(\frac{3}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Odštejte \frac{2}{5} od 1, da dobite \frac{3}{5}.
-\frac{863}{2268}+\frac{\frac{1}{20}}{\frac{9}{25}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Izračunajte potenco \frac{3}{5} števila 2, da dobite \frac{9}{25}.
-\frac{863}{2268}+\frac{1}{20}\times \frac{25}{9}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Delite \frac{1}{20} s/z \frac{9}{25} tako, da pomnožite \frac{1}{20} z obratno vrednostjo \frac{9}{25}.
-\frac{863}{2268}+\frac{5}{36}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Pomnožite \frac{1}{20} in \frac{25}{9}, da dobite \frac{5}{36}.
-\frac{137}{567}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Seštejte -\frac{863}{2268} in \frac{5}{36}, da dobite -\frac{137}{567}.
-\frac{137}{567}-\frac{\frac{1}{9}}{\frac{1}{8}-\frac{15}{8}}
Odštejte \frac{2}{9} od \frac{1}{3}, da dobite \frac{1}{9}.
-\frac{137}{567}-\frac{\frac{1}{9}}{-\frac{7}{4}}
Odštejte \frac{15}{8} od \frac{1}{8}, da dobite -\frac{7}{4}.
-\frac{137}{567}-\frac{1}{9}\left(-\frac{4}{7}\right)
Delite \frac{1}{9} s/z -\frac{7}{4} tako, da pomnožite \frac{1}{9} z obratno vrednostjo -\frac{7}{4}.
-\frac{137}{567}-\left(-\frac{4}{63}\right)
Pomnožite \frac{1}{9} in -\frac{4}{7}, da dobite -\frac{4}{63}.
-\frac{137}{567}+\frac{4}{63}
Nasprotna vrednost -\frac{4}{63} je \frac{4}{63}.
-\frac{101}{567}
Seštejte -\frac{137}{567} in \frac{4}{63}, da dobite -\frac{101}{567}.