Ovrednoti
\frac{241}{40}=6,025
Faktoriziraj
\frac{241}{2 ^ {3} \cdot 5} = 6\frac{1}{40} = 6,025
Delež
Kopirano v odložišče
\frac{\frac{\frac{1}{2}}{\left(\frac{2}{3}\right)^{-1}}}{\left(1-\frac{1}{3}\right)\times \frac{2}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Izračunajte \sqrt[5]{\frac{1}{32}} in dobite \frac{1}{2}.
\frac{\frac{\frac{1}{2}}{\frac{3}{2}}}{\left(1-\frac{1}{3}\right)\times \frac{2}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Izračunajte potenco \frac{2}{3} števila -1, da dobite \frac{3}{2}.
\frac{\frac{1}{2}\times \frac{2}{3}}{\left(1-\frac{1}{3}\right)\times \frac{2}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Delite \frac{1}{2} s/z \frac{3}{2} tako, da pomnožite \frac{1}{2} z obratno vrednostjo \frac{3}{2}.
\frac{\frac{1}{3}}{\left(1-\frac{1}{3}\right)\times \frac{2}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Pomnožite \frac{1}{2} in \frac{2}{3}, da dobite \frac{1}{3}.
\frac{\frac{1}{3}}{\frac{2}{3}\times \frac{2}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Odštejte \frac{1}{3} od 1, da dobite \frac{2}{3}.
\frac{\frac{1}{3}}{\frac{2}{3}\times \frac{1}{2}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Zmanjšajte ulomek \frac{2}{4} na najmanjši imenovalec tako, da izpeljete in okrajšate 2.
\frac{\frac{1}{3}}{\frac{1}{3}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Pomnožite \frac{2}{3} in \frac{1}{2}, da dobite \frac{1}{3}.
\frac{\frac{1}{3}}{\frac{5}{6}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Seštejte \frac{1}{3} in \frac{1}{2}, da dobite \frac{5}{6}.
\frac{1}{3}\times \frac{6}{5}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Delite \frac{1}{3} s/z \frac{5}{6} tako, da pomnožite \frac{1}{3} z obratno vrednostjo \frac{5}{6}.
\frac{2}{5}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Pomnožite \frac{1}{3} in \frac{6}{5}, da dobite \frac{2}{5}.
\frac{2}{5}+\frac{\sqrt{\frac{9}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Odštejte \frac{16}{25} od 1, da dobite \frac{9}{25}.
\frac{2}{5}+\frac{\frac{3}{5}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Znova napišite kvadratni koren deljenja \frac{9}{25} kot deljenje kvadratnih korenov \frac{\sqrt{9}}{\sqrt{25}}. Vzemite kvadratni koren števca in imenovalca.
\frac{2}{5}+\frac{\frac{3}{5}}{\frac{\frac{4}{5}}{\frac{15}{2}}}
Izračunajte potenco \frac{15}{2} števila 1, da dobite \frac{15}{2}.
\frac{2}{5}+\frac{\frac{3}{5}}{\frac{4}{5}\times \frac{2}{15}}
Delite \frac{4}{5} s/z \frac{15}{2} tako, da pomnožite \frac{4}{5} z obratno vrednostjo \frac{15}{2}.
\frac{2}{5}+\frac{\frac{3}{5}}{\frac{8}{75}}
Pomnožite \frac{4}{5} in \frac{2}{15}, da dobite \frac{8}{75}.
\frac{2}{5}+\frac{3}{5}\times \frac{75}{8}
Delite \frac{3}{5} s/z \frac{8}{75} tako, da pomnožite \frac{3}{5} z obratno vrednostjo \frac{8}{75}.
\frac{2}{5}+\frac{45}{8}
Pomnožite \frac{3}{5} in \frac{75}{8}, da dobite \frac{45}{8}.
\frac{241}{40}
Seštejte \frac{2}{5} in \frac{45}{8}, da dobite \frac{241}{40}.
Primeri
Kvadratna enačba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna enačba
y = 3x + 4
Aritmetično
699 * 533
Matrika
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hkratna enačba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Omejitve
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}