Preskoči na glavno vsebino
Ovrednoti
Tick mark Image

Podobne težave pri spletnem iskanju

Delež

\frac{\sqrt{2}\left(\sqrt{6}+\sqrt{2}\right)}{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}+\sqrt{2}\right)}-\frac{\sqrt{3}}{\sqrt{6}+\sqrt{2}}
Racionalizirajte imenovalec \frac{\sqrt{2}}{\sqrt{6}-\sqrt{2}} tako, da pomnožite števec in imenovalec s \sqrt{6}+\sqrt{2}.
\frac{\sqrt{2}\left(\sqrt{6}+\sqrt{2}\right)}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{2}\right)^{2}}-\frac{\sqrt{3}}{\sqrt{6}+\sqrt{2}}
Razmislite o \left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}+\sqrt{2}\right). Množenje je lahko preoblikovano v razliko kvadratov s pravilom: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{2}\left(\sqrt{6}+\sqrt{2}\right)}{6-2}-\frac{\sqrt{3}}{\sqrt{6}+\sqrt{2}}
Kvadrat števila \sqrt{6}. Kvadrat števila \sqrt{2}.
\frac{\sqrt{2}\left(\sqrt{6}+\sqrt{2}\right)}{4}-\frac{\sqrt{3}}{\sqrt{6}+\sqrt{2}}
Odštejte 2 od 6, da dobite 4.
\frac{\sqrt{2}\left(\sqrt{6}+\sqrt{2}\right)}{4}-\frac{\sqrt{3}\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}
Racionalizirajte imenovalec \frac{\sqrt{3}}{\sqrt{6}+\sqrt{2}} tako, da pomnožite števec in imenovalec s \sqrt{6}-\sqrt{2}.
\frac{\sqrt{2}\left(\sqrt{6}+\sqrt{2}\right)}{4}-\frac{\sqrt{3}\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Razmislite o \left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right). Množenje je lahko preoblikovano v razliko kvadratov s pravilom: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{2}\left(\sqrt{6}+\sqrt{2}\right)}{4}-\frac{\sqrt{3}\left(\sqrt{6}-\sqrt{2}\right)}{6-2}
Kvadrat števila \sqrt{6}. Kvadrat števila \sqrt{2}.
\frac{\sqrt{2}\left(\sqrt{6}+\sqrt{2}\right)}{4}-\frac{\sqrt{3}\left(\sqrt{6}-\sqrt{2}\right)}{4}
Odštejte 2 od 6, da dobite 4.
\frac{\sqrt{2}\left(\sqrt{6}+\sqrt{2}\right)-\sqrt{3}\left(\sqrt{6}-\sqrt{2}\right)}{4}
Ker \frac{\sqrt{2}\left(\sqrt{6}+\sqrt{2}\right)}{4} in \frac{\sqrt{3}\left(\sqrt{6}-\sqrt{2}\right)}{4} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{2\sqrt{3}+2-3\sqrt{2}+\sqrt{6}}{4}
Izvedi množenje v \sqrt{2}\left(\sqrt{6}+\sqrt{2}\right)-\sqrt{3}\left(\sqrt{6}-\sqrt{2}\right).