Preskoči na glavno vsebino
Ovrednoti
Tick mark Image
Faktoriziraj
Tick mark Image

Delež

\frac{\frac{\frac{\frac{12+3}{4}}{\frac{3}{4}-1}+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Pomnožite 3 in 4, da dobite 12.
\frac{\frac{\frac{\frac{15}{4}}{\frac{3}{4}-1}+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Seštejte 12 in 3, da dobite 15.
\frac{\frac{\frac{\frac{15}{4}}{\frac{3}{4}-\frac{4}{4}}+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Pretvorite 1 v ulomek \frac{4}{4}.
\frac{\frac{\frac{\frac{15}{4}}{\frac{3-4}{4}}+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Ker \frac{3}{4} in \frac{4}{4} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{\frac{\frac{\frac{15}{4}}{-\frac{1}{4}}+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Odštejte 4 od 3, da dobite -1.
\frac{\frac{\frac{15}{4}\left(-4\right)+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Delite \frac{15}{4} s/z -\frac{1}{4} tako, da pomnožite \frac{15}{4} z obratno vrednostjo -\frac{1}{4}.
\frac{\frac{\frac{15\left(-4\right)}{4}+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Izrazite \frac{15}{4}\left(-4\right) kot enojni ulomek.
\frac{\frac{\frac{-60}{4}+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Pomnožite 15 in -4, da dobite -60.
\frac{\frac{-15+\left(1-0\times 6\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Delite -60 s/z 4, da dobite -15.
\frac{\frac{-15+\left(1-0\right)\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Pomnožite 0 in 6, da dobite 0.
\frac{\frac{-15+1\left(-\frac{5}{2}\right)^{2}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Odštejte 0 od 1, da dobite 1.
\frac{\frac{-15+1\times \frac{25}{4}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Izračunajte potenco -\frac{5}{2} števila 2, da dobite \frac{25}{4}.
\frac{\frac{-15+\frac{25}{4}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Pomnožite 1 in \frac{25}{4}, da dobite \frac{25}{4}.
\frac{\frac{-\frac{60}{4}+\frac{25}{4}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Pretvorite -15 v ulomek -\frac{60}{4}.
\frac{\frac{\frac{-60+25}{4}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
-\frac{60}{4} in \frac{25}{4} imata isti imenovalec, zato ju seštejte tako, da seštejete njuna števca.
\frac{\frac{-\frac{35}{4}}{-\frac{5}{3}}-20}{\left(-1\right)^{39}}
Seštejte -60 in 25, da dobite -35.
\frac{-\frac{35}{4}\left(-\frac{3}{5}\right)-20}{\left(-1\right)^{39}}
Delite -\frac{35}{4} s/z -\frac{5}{3} tako, da pomnožite -\frac{35}{4} z obratno vrednostjo -\frac{5}{3}.
\frac{\frac{-35\left(-3\right)}{4\times 5}-20}{\left(-1\right)^{39}}
Pomnožite -\frac{35}{4} s/z -\frac{3}{5} tako, da pomnožite števec s števcem in imenovalec z imenovalcem.
\frac{\frac{105}{20}-20}{\left(-1\right)^{39}}
Izvedite množenja v ulomku \frac{-35\left(-3\right)}{4\times 5}.
\frac{\frac{21}{4}-20}{\left(-1\right)^{39}}
Zmanjšajte ulomek \frac{105}{20} na najmanjši imenovalec tako, da izpeljete in okrajšate 5.
\frac{\frac{21}{4}-\frac{80}{4}}{\left(-1\right)^{39}}
Pretvorite 20 v ulomek \frac{80}{4}.
\frac{\frac{21-80}{4}}{\left(-1\right)^{39}}
Ker \frac{21}{4} in \frac{80}{4} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{-\frac{59}{4}}{\left(-1\right)^{39}}
Odštejte 80 od 21, da dobite -59.
\frac{-\frac{59}{4}}{-1}
Izračunajte potenco -1 števila 39, da dobite -1.
\frac{-59}{4\left(-1\right)}
Izrazite \frac{-\frac{59}{4}}{-1} kot enojni ulomek.
\frac{-59}{-4}
Pomnožite 4 in -1, da dobite -4.
\frac{59}{4}
Ulomek \frac{-59}{-4} lahko poenostavite na \frac{59}{4} tako, da odstranite negativni znak s števca in imenovalca.