Skočiť na hlavný obsah
Riešenie pre x
Tick mark Image
Graf

Podobné úlohy z hľadania na webe

Zdieľať

x\left(x-5\right)=0
Vyčleňte x.
x=0 x=5
Ak chcete nájsť riešenia rovníc, vyriešte x=0 a x-5=0.
x^{2}-5x=0
Vynásobením x a x získate x^{2}.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}}}{2}
Táto rovnica má štandardný formát: ax^{2}+bx+c=0. Do kvadratického vzorca \frac{-b±\sqrt{b^{2}-4ac}}{2a} dosaďte 1 za a, -5 za b a 0 za c.
x=\frac{-\left(-5\right)±5}{2}
Vypočítajte druhú odmocninu čísla \left(-5\right)^{2}.
x=\frac{5±5}{2}
Opak čísla -5 je 5.
x=\frac{10}{2}
Vyriešte rovnicu x=\frac{5±5}{2}, keď ± je plus. Prirátajte 5 ku 5.
x=5
Vydeľte číslo 10 číslom 2.
x=\frac{0}{2}
Vyriešte rovnicu x=\frac{5±5}{2}, keď ± je mínus. Odčítajte číslo 5 od čísla 5.
x=0
Vydeľte číslo 0 číslom 2.
x=5 x=0
Teraz je rovnica vyriešená.
x^{2}-5x=0
Vynásobením x a x získate x^{2}.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=\left(-\frac{5}{2}\right)^{2}
Číslo -5, koeficient člena x, vydeľte číslom 2 a získajte výsledok -\frac{5}{2}. Potom pridajte k obidvom stranám rovnice druhú mocninu -\frac{5}{2}. V tomto kroku sa z ľavej strany rovnice stane dokonalá mocnina.
x^{2}-5x+\frac{25}{4}=\frac{25}{4}
Umocnite zlomok -\frac{5}{2} tak, že umocníte čitateľa aj menovateľa zlomku.
\left(x-\frac{5}{2}\right)^{2}=\frac{25}{4}
Rozložte x^{2}-5x+\frac{25}{4} na faktory. Všeobecne platí, že keď je x^{2}+bx+c dokonalá mocnina, dá sa vždy rozložte na faktory ako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Vypočítajte druhú odmocninu oboch strán rovnice.
x-\frac{5}{2}=\frac{5}{2} x-\frac{5}{2}=-\frac{5}{2}
Zjednodušte.
x=5 x=0
Prirátajte \frac{5}{2} ku obom stranám rovnice.