Skočiť na hlavný obsah
Rozložiť na faktory
Tick mark Image
Vyhodnotiť
Tick mark Image

Podobné úlohy z hľadania na webe

Zdieľať

p+q=6 pq=1\times 9=9
Rozložte výraz na faktory pomocou zoskupenia. Najprv je výraz potrebné prepísať do tvaru a^{2}+pa+qa+9. Ak chcete nájsť p a q, nastavte systém tak, aby sa vyriešiť.
1,9 3,3
Keďže pq je kladné, p a q majú rovnaký znak. Keďže p+q je kladné, p a q sú oba kladné. Uveďte všetky takéto celočíselné páry, ktoré poskytujú súčin 9.
1+9=10 3+3=6
Vypočítajte súčet pre každý pár.
p=3 q=3
Riešenie je pár, ktorá poskytuje 6 súčtu.
\left(a^{2}+3a\right)+\left(3a+9\right)
Zapíšte a^{2}+6a+9 ako výraz \left(a^{2}+3a\right)+\left(3a+9\right).
a\left(a+3\right)+3\left(a+3\right)
a na prvej skupine a 3 v druhá skupina.
\left(a+3\right)\left(a+3\right)
Vyberte spoločný člen a+3 pred zátvorku pomocou distributívneho zákona.
\left(a+3\right)^{2}
Prepíšte rovnicu ako druhú mocninu dvojčlena.
factor(a^{2}+6a+9)
Tento trojčlen má tvar mocniny trojčlena, ktorý je možno vynásobený spoločným činiteľom. Mocniny trojčlena možno rozložiť nájdením druhých odmocnín člena s najvyšším a člena s najnižším mocniteľom.
\sqrt{9}=3
Nájdite druhú odmocninu člena s najnižším mocniteľom 9.
\left(a+3\right)^{2}
Druhá mocnina trojčlena je druhá mocnina dvojčlena, ktorý je súčtom alebo rozdielom druhých odmocnín prvého a posledného člena, pričom znamienko sa určuje podľa znamienka stredného člena druhej mocniny trojčlena.
a^{2}+6a+9=0
Kvadratický mnohočlen možno rozložiť na faktory použitím transformácie ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), pričom x_{1} a x_{2} sú riešeniami kvadratickej rovnice ax^{2}+bx+c=0.
a=\frac{-6±\sqrt{6^{2}-4\times 9}}{2}
Všetky rovnice v tvare ax^{2}+bx+c=0 je možné vyriešiť ako kvadratickú rovnicu: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkom kvadratickej rovnice sú dve riešenia, jedno pre súčet a druhé pre rozdiel ±.
a=\frac{-6±\sqrt{36-4\times 9}}{2}
Umocnite číslo 6.
a=\frac{-6±\sqrt{36-36}}{2}
Vynásobte číslo -4 číslom 9.
a=\frac{-6±\sqrt{0}}{2}
Prirátajte 36 ku -36.
a=\frac{-6±0}{2}
Vypočítajte druhú odmocninu čísla 0.
a^{2}+6a+9=\left(a-\left(-3\right)\right)\left(a-\left(-3\right)\right)
Rozložte pôvodný výraz na faktory použitím ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Za x_{1} dosaďte -3 a za x_{2} dosaďte -3.
a^{2}+6a+9=\left(a+3\right)\left(a+3\right)
Zjednodušiť všetky výrazy v podobe p-\left(-q\right) na p+q.