Vyhodnotiť
\frac{22}{5}=4,4
Rozložiť na faktory
\frac{2 \cdot 11}{5} = 4\frac{2}{5} = 4,4
Zdieľať
Skopírované do schránky
\frac{15+2}{5}+\frac{\frac{2\times 35+2}{35}}{\frac{1\times 25+11}{25}}-\frac{3}{7}
Vynásobením 3 a 5 získate 15.
\frac{17}{5}+\frac{\frac{2\times 35+2}{35}}{\frac{1\times 25+11}{25}}-\frac{3}{7}
Sčítaním 15 a 2 získate 17.
\frac{17}{5}+\frac{\left(2\times 35+2\right)\times 25}{35\left(1\times 25+11\right)}-\frac{3}{7}
Vydeľte číslo \frac{2\times 35+2}{35} zlomkom \frac{1\times 25+11}{25} tak, že číslo \frac{2\times 35+2}{35} vynásobíte prevrátenou hodnotou zlomku \frac{1\times 25+11}{25}.
\frac{17}{5}+\frac{5\left(2+2\times 35\right)}{7\left(11+25\right)}-\frac{3}{7}
Vykráťte 5 v čitateľovi aj v menovateľovi.
\frac{17}{5}+\frac{5\left(2+70\right)}{7\left(11+25\right)}-\frac{3}{7}
Vynásobením 2 a 35 získate 70.
\frac{17}{5}+\frac{5\times 72}{7\left(11+25\right)}-\frac{3}{7}
Sčítaním 2 a 70 získate 72.
\frac{17}{5}+\frac{360}{7\left(11+25\right)}-\frac{3}{7}
Vynásobením 5 a 72 získate 360.
\frac{17}{5}+\frac{360}{7\times 36}-\frac{3}{7}
Sčítaním 11 a 25 získate 36.
\frac{17}{5}+\frac{360}{252}-\frac{3}{7}
Vynásobením 7 a 36 získate 252.
\frac{17}{5}+\frac{10}{7}-\frac{3}{7}
Vykráťte zlomok \frac{360}{252} na základný tvar extrakciou a elimináciou 36.
\frac{119}{35}+\frac{50}{35}-\frac{3}{7}
Najmenší spoločný násobok čísiel 5 a 7 je 35. Previesť čísla \frac{17}{5} a \frac{10}{7} na zlomky s menovateľom 35.
\frac{119+50}{35}-\frac{3}{7}
Keďže \frac{119}{35} a \frac{50}{35} majú rovnakého menovateľa, sčítajte ich sčítaním čitateľov.
\frac{169}{35}-\frac{3}{7}
Sčítaním 119 a 50 získate 169.
\frac{169}{35}-\frac{15}{35}
Najmenší spoločný násobok čísiel 35 a 7 je 35. Previesť čísla \frac{169}{35} a \frac{3}{7} na zlomky s menovateľom 35.
\frac{169-15}{35}
Keďže \frac{169}{35} a \frac{15}{35} majú rovnakého menovateľa, odčítajte ich odčítaním čitateľov.
\frac{154}{35}
Odčítajte 15 z 169 a dostanete 154.
\frac{22}{5}
Vykráťte zlomok \frac{154}{35} na základný tvar extrakciou a elimináciou 7.
Príklady
Kvadratická rovnica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineárna rovnica
y = 3x + 4
Aritmetické úlohy
699 * 533
Matica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultánna rovnica
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciálne rovnice
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrácia
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}