Skočiť na hlavný obsah
Rozložiť na faktory
Tick mark Image
Vyhodnotiť
Tick mark Image

Podobné úlohy z hľadania na webe

Zdieľať

5\left(5b^{2}-4b\right)
Vyčleňte 5.
b\left(5b-4\right)
Zvážte 5b^{2}-4b. Vyčleňte b.
5b\left(5b-4\right)
Prepíšte kompletný výraz rozložený na faktory.
25b^{2}-20b=0
Kvadratický mnohočlen možno rozložiť na faktory použitím transformácie ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), pričom x_{1} a x_{2} sú riešeniami kvadratickej rovnice ax^{2}+bx+c=0.
b=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}}}{2\times 25}
Všetky rovnice v tvare ax^{2}+bx+c=0 je možné vyriešiť ako kvadratickú rovnicu: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkom kvadratickej rovnice sú dve riešenia, jedno pre súčet a druhé pre rozdiel ±.
b=\frac{-\left(-20\right)±20}{2\times 25}
Vypočítajte druhú odmocninu čísla \left(-20\right)^{2}.
b=\frac{20±20}{2\times 25}
Opak čísla -20 je 20.
b=\frac{20±20}{50}
Vynásobte číslo 2 číslom 25.
b=\frac{40}{50}
Vyriešte rovnicu b=\frac{20±20}{50}, keď ± je plus. Prirátajte 20 ku 20.
b=\frac{4}{5}
Vykráťte zlomok \frac{40}{50} na základný tvar extrakciou a elimináciou 10.
b=\frac{0}{50}
Vyriešte rovnicu b=\frac{20±20}{50}, keď ± je mínus. Odčítajte číslo 20 od čísla 20.
b=0
Vydeľte číslo 0 číslom 50.
25b^{2}-20b=25\left(b-\frac{4}{5}\right)b
Rozložte pôvodný výraz na faktory použitím ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Za x_{1} dosaďte \frac{4}{5} a za x_{2} dosaďte 0.
25b^{2}-20b=25\times \frac{5b-4}{5}b
Odčítajte zlomok \frac{4}{5} od zlomku b tak, že nájdete spoločného menovateľa a odčítate čitateľov. Ak je to možné, zlomok potom čo najviac vykráťte.
25b^{2}-20b=5\left(5b-4\right)b
Vykrátiť najväčšieho spoločného deliteľa 5 v 25 a 5.