Skočiť na hlavný obsah
Vyhodnotiť
Tick mark Image
Derivovať podľa x
Tick mark Image
Graf

Podobné úlohy z hľadania na webe

Zdieľať

\frac{12x^{2}\left(x-2\right)}{x-2}-\frac{1}{x-2}
Ak chcete výrazy sčítavať alebo odčítavať, musíte ich rozložiť tak, aby mali rovnakého menovateľa. Vynásobte číslo 12x^{2} číslom \frac{x-2}{x-2}.
\frac{12x^{2}\left(x-2\right)-1}{x-2}
Keďže \frac{12x^{2}\left(x-2\right)}{x-2} a \frac{1}{x-2} majú rovnakého menovateľa, odčítajte ich odčítaním čitateľov.
\frac{12x^{3}-24x^{2}-1}{x-2}
Vynásobiť vo výraze 12x^{2}\left(x-2\right)-1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12x^{2}\left(x-2\right)}{x-2}-\frac{1}{x-2})
Ak chcete výrazy sčítavať alebo odčítavať, musíte ich rozložiť tak, aby mali rovnakého menovateľa. Vynásobte číslo 12x^{2} číslom \frac{x-2}{x-2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12x^{2}\left(x-2\right)-1}{x-2})
Keďže \frac{12x^{2}\left(x-2\right)}{x-2} a \frac{1}{x-2} majú rovnakého menovateľa, odčítajte ich odčítaním čitateľov.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12x^{3}-24x^{2}-1}{x-2})
Vynásobiť vo výraze 12x^{2}\left(x-2\right)-1.
\frac{\left(x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(12x^{3}-24x^{2}-1)-\left(12x^{3}-24x^{2}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-2)}{\left(x^{1}-2\right)^{2}}
V prípade akýchkoľvek dvoch diferencovateľných funkcií je derivácia podielu dvoch funkcií rozdielom medzi násobkom menovateľa a derivácie čitateľa a násobkom čitateľa a derivácie menovateľa, to všetko delené umocneným menovateľom.
\frac{\left(x^{1}-2\right)\left(3\times 12x^{3-1}+2\left(-24\right)x^{2-1}\right)-\left(12x^{3}-24x^{2}-1\right)x^{1-1}}{\left(x^{1}-2\right)^{2}}
Derivácia mnohočlena je súčtom derivácií jeho členov. Derivácia konštantného člena je 0. Derivácia člena ax^{n} je nax^{n-1}.
\frac{\left(x^{1}-2\right)\left(36x^{2}-48x^{1}\right)-\left(12x^{3}-24x^{2}-1\right)x^{0}}{\left(x^{1}-2\right)^{2}}
Zjednodušte.
\frac{x^{1}\times 36x^{2}+x^{1}\left(-48\right)x^{1}-2\times 36x^{2}-2\left(-48\right)x^{1}-\left(12x^{3}-24x^{2}-1\right)x^{0}}{\left(x^{1}-2\right)^{2}}
Vynásobte číslo x^{1}-2 číslom 36x^{2}-48x^{1}.
\frac{x^{1}\times 36x^{2}+x^{1}\left(-48\right)x^{1}-2\times 36x^{2}-2\left(-48\right)x^{1}-\left(12x^{3}x^{0}-24x^{2}x^{0}-x^{0}\right)}{\left(x^{1}-2\right)^{2}}
Vynásobte číslo 12x^{3}-24x^{2}-1 číslom x^{0}.
\frac{36x^{1+2}-48x^{1+1}-2\times 36x^{2}-2\left(-48\right)x^{1}-\left(12x^{3}-24x^{2}-x^{0}\right)}{\left(x^{1}-2\right)^{2}}
Ak chcete vynásobiť mocniteľov rovnakého mocnenca, sčítajte ich exponenty.
\frac{36x^{3}-48x^{2}-72x^{2}+96x^{1}-\left(12x^{3}-24x^{2}-x^{0}\right)}{\left(x^{1}-2\right)^{2}}
Zjednodušte.
\frac{24x^{3}-24x^{2}-72x^{2}+96x^{1}-\left(-x^{0}\right)}{\left(x^{1}-2\right)^{2}}
Zlúčte podobné členy.
\frac{24x^{3}-24x^{2}-72x^{2}+96x-\left(-x^{0}\right)}{\left(x-2\right)^{2}}
Pre akýkoľvek člen t, t^{1}=t.
\frac{24x^{3}-24x^{2}-72x^{2}+96x-\left(-1\right)}{\left(x-2\right)^{2}}
Pre akýkoľvek člen t s výnimkou 0, t^{0}=1.