Skočiť na hlavný obsah
Rozložiť na faktory
Tick mark Image
Vyhodnotiť
Tick mark Image
Graf

Podobné úlohy z hľadania na webe

Zdieľať

\left(x-4\right)\left(x^{2}+x-2\right)
Podľa pravidla racionálnych koreňov sú všetky racionálne korene polynómu v tvare \frac{p}{q}, kde p je deliteľom konštantného výrazu 8 a q je deliteľom vedúceho koeficientu 1. Jeden taký koreň je 4. Polynóm rozložíte na faktory vydelením x-4.
a+b=1 ab=1\left(-2\right)=-2
Zvážte x^{2}+x-2. Rozložte výraz na faktory pomocou zoskupenia. Najprv je výraz potrebné prepísať do tvaru x^{2}+ax+bx-2. Ak chcete nájsť a a b, nastavte systém tak, aby sa vyriešiť.
a=-1 b=2
Keďže ab je záporná, a a b majú protiľahlom značky. Keďže a+b je kladná hodnota, kladné číslo má vyššiu absolútnu hodnotu ako záporné. Jedinou takou dvojicou je systémové riešenie.
\left(x^{2}-x\right)+\left(2x-2\right)
Zapíšte x^{2}+x-2 ako výraz \left(x^{2}-x\right)+\left(2x-2\right).
x\left(x-1\right)+2\left(x-1\right)
x na prvej skupine a 2 v druhá skupina.
\left(x-1\right)\left(x+2\right)
Vyberte spoločný člen x-1 pred zátvorku pomocou distributívneho zákona.
\left(x-4\right)\left(x-1\right)\left(x+2\right)
Prepíšte kompletný výraz rozložený na faktory.