Vyhodnotiť
\frac{1}{10000000}=0,0000001
Rozložiť na faktory
\frac{1}{2 ^ {7} \cdot 5 ^ {7}} = 1 \times 10^{-7}
Zdieľať
Skopírované do schránky
\sqrt{\frac{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}\left(10^{-1236}\times 0\times 0\times 5+10^{-14}\right)}{10^{-72}+0\times 0\times 5}}
Vypočítajte -72 ako mocninu čísla 10 a dostanete \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}.
\sqrt{\frac{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}\left(\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}\times 0\times 0\times 5+10^{-14}\right)}{10^{-72}+0\times 0\times 5}}
Vypočítajte -1236 ako mocninu čísla 10 a dostanete \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}.
\sqrt{\frac{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}\left(0\times 0\times 5+10^{-14}\right)}{10^{-72}+0\times 0\times 5}}
Vynásobením \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000} a 0 získate 0.
\sqrt{\frac{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}\left(0\times 5+10^{-14}\right)}{10^{-72}+0\times 0\times 5}}
Vynásobením 0 a 0 získate 0.
\sqrt{\frac{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}\left(0+10^{-14}\right)}{10^{-72}+0\times 0\times 5}}
Vynásobením 0 a 5 získate 0.
\sqrt{\frac{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}\left(0+\frac{1}{100000000000000}\right)}{10^{-72}+0\times 0\times 5}}
Vypočítajte -14 ako mocninu čísla 10 a dostanete \frac{1}{100000000000000}.
\sqrt{\frac{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}\times \frac{1}{100000000000000}}{10^{-72}+0\times 0\times 5}}
Sčítaním 0 a \frac{1}{100000000000000} získate \frac{1}{100000000000000}.
\sqrt{\frac{\frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000}}{10^{-72}+0\times 0\times 5}}
Vynásobením \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000} a \frac{1}{100000000000000} získate \frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000}.
\sqrt{\frac{\frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000}}{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}+0\times 0\times 5}}
Vypočítajte -72 ako mocninu čísla 10 a dostanete \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}.
\sqrt{\frac{\frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000}}{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}+0\times 5}}
Vynásobením 0 a 0 získate 0.
\sqrt{\frac{\frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000}}{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}+0}}
Vynásobením 0 a 5 získate 0.
\sqrt{\frac{\frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000}}{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}}}
Sčítaním \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000} a 0 získate \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}.
\sqrt{\frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000}\times 1000000000000000000000000000000000000000000000000000000000000000000000000}
Vydeľte číslo \frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000} zlomkom \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000} tak, že číslo \frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000} vynásobíte prevrátenou hodnotou zlomku \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}.
\sqrt{\frac{1}{100000000000000}}
Vynásobením \frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000} a 1000000000000000000000000000000000000000000000000000000000000000000000000 získate \frac{1}{100000000000000}.
\frac{1}{10000000}
Prepíšte druhú odmocninu delenia \frac{1}{100000000000000} ako delenie štvorcových korene \frac{\sqrt{1}}{\sqrt{100000000000000}}. Vytvorte druhú odmocninu čitateľa aj menovateľa.
Príklady
Kvadratická rovnica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineárna rovnica
y = 3x + 4
Aritmetické úlohy
699 * 533
Matica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultánna rovnica
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciálne rovnice
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrácia
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}