Skočiť na hlavný obsah
Vyhodnotiť
Tick mark Image

Podobné úlohy z hľadania na webe

Zdieľať

\int x^{2}+5x+2\mathrm{d}x
Najskôr vyhodnoťte neurčitý integrál.
\int x^{2}\mathrm{d}x+\int 5x\mathrm{d}x+\int 2\mathrm{d}x
Integrujte súčet podľa výrazov.
\int x^{2}\mathrm{d}x+5\int x\mathrm{d}x+\int 2\mathrm{d}x
Vyčleňte konštantu v každom z výrazov.
\frac{x^{3}}{3}+5\int x\mathrm{d}x+\int 2\mathrm{d}x
Keďže \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pre k\neq -1, nahraďte \int x^{2}\mathrm{d}x s \frac{x^{3}}{3}.
\frac{x^{3}}{3}+\frac{5x^{2}}{2}+\int 2\mathrm{d}x
Keďže \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pre k\neq -1, nahraďte \int x\mathrm{d}x s \frac{x^{2}}{2}. Vynásobte číslo 5 číslom \frac{x^{2}}{2}.
\frac{x^{3}}{3}+\frac{5x^{2}}{2}+2x
Nájdite integrál 2 pomocou tabuľky bežných integrály pravidiel \int a\mathrm{d}x=ax.
\frac{4^{3}}{3}+\frac{5}{2}\times 4^{2}+2\times 4-\left(\frac{3^{3}}{3}+\frac{5}{2}\times 3^{2}+2\times 3\right)
Určitý integrál je neurčitým integrálom výrazu vyhodnoteného ako horná limita integrálu mínus neurčitý integrál vyhodnotený ako spodná limita integrálu.
\frac{191}{6}
Zjednodušte.