Skočiť na hlavný obsah
Vyhodnotiť
Tick mark Image

Podobné úlohy z hľadania na webe

Zdieľať

\int x+\sqrt[3]{x}+\frac{1}{x^{2}}\mathrm{d}x
Najskôr vyhodnoťte neurčitý integrál.
\int x\mathrm{d}x+\int \sqrt[3]{x}\mathrm{d}x+\int \frac{1}{x^{2}}\mathrm{d}x
Integrujte súčet podľa výrazov.
\frac{x^{2}}{2}+\int \sqrt[3]{x}\mathrm{d}x+\int \frac{1}{x^{2}}\mathrm{d}x
Keďže \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pre k\neq -1, nahraďte \int x\mathrm{d}x s \frac{x^{2}}{2}.
\frac{x^{2}}{2}+\frac{3x^{\frac{4}{3}}}{4}+\int \frac{1}{x^{2}}\mathrm{d}x
Zapíšte \sqrt[3]{x} ako výraz x^{\frac{1}{3}}. Keďže \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pre k\neq -1, nahraďte \int x^{\frac{1}{3}}\mathrm{d}x s \frac{x^{\frac{4}{3}}}{\frac{4}{3}}. Zjednodušte.
\frac{x^{2}}{2}+\frac{3x^{\frac{4}{3}}}{4}-\frac{1}{x}
Keďže \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pre k\neq -1, nahraďte \int \frac{1}{x^{2}}\mathrm{d}x s -\frac{1}{x}.
\frac{2^{2}}{2}+\frac{3}{4}\times 2^{\frac{4}{3}}-2^{-1}-\left(\frac{1^{2}}{2}+\frac{3}{4}\times 1^{\frac{4}{3}}-1^{-1}\right)
Určitý integrál je neurčitým integrálom výrazu vyhodnoteného ako horná limita integrálu mínus neurčitý integrál vyhodnotený ako spodná limita integrálu.
\frac{5}{4}+\frac{3\sqrt[3]{2}}{2}
Zjednodušte.