Skočiť na hlavný obsah
Vyhodnotiť
Tick mark Image
Rozšíriť
Tick mark Image

Podobné úlohy z hľadania na webe

Zdieľať

\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a-2\right)^{2}\left(a+2\right)^{2}+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Na rozloženie výrazu \left(a-2b\right)^{3} použite binomickú vetu \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a^{2}-4a+4\right)\left(a+2\right)^{2}+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Na rozloženie výrazu \left(a-2\right)^{2} použite binomickú vetu \left(p-q\right)^{2}=p^{2}-2pq+q^{2}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a^{2}-4a+4\right)\left(a^{2}+4a+4\right)+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Na rozloženie výrazu \left(a+2\right)^{2} použite binomickú vetu \left(p+q\right)^{2}=p^{2}+2pq+q^{2}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-8a^{2}+16+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Použite distributívny zákon na vynásobenie výrazov a^{2}-4a+4 a a^{2}+4a+4 a zlúčenie podobných členov.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Skombinovaním -8a^{2} a 4a^{2} získate -4a^{2}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(4-4a^{2}+\left(a^{2}\right)^{2}\right)\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Na rozloženie výrazu \left(2-a^{2}\right)^{2} použite binomickú vetu \left(p-q\right)^{2}=p^{2}-2pq+q^{2}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(4-4a^{2}+a^{4}\right)\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Ak chcete umocniť už umocnené číslo, vynásobte mocnitele. Vynásobením čísel 2 a 2 dostanete 4.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-4+4a^{2}-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Ak chcete nájsť opačnú hodnotu k výrazu 4-4a^{2}+a^{4}, nájdite opačnú hodnotu jednotlivých členov.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+12+4a^{2}-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Odčítajte 4 z 16 a dostanete 12.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}+12-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Skombinovaním -4a^{2} a 4a^{2} získate 0.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\times 12-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Skombinovaním a^{4} a -a^{4} získate 0.
\frac{1}{3}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Vynásobením \frac{1}{36} a 12 získate \frac{1}{3}.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Použite distributívny zákon na vynásobenie \frac{1}{3} a a^{3}-6a^{2}b+12ab^{2}-8b^{3}.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-\left(\frac{11}{3}ab^{2}-ba^{2}\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Použite distributívny zákon na vynásobenie ab a \frac{11}{3}b-a.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-\frac{11}{3}ab^{2}+ba^{2}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Ak chcete nájsť opačnú hodnotu k výrazu \frac{11}{3}ab^{2}-ba^{2}, nájdite opačnú hodnotu jednotlivých členov.
\frac{1}{3}a^{3}-2a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}+ba^{2}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Skombinovaním 4ab^{2} a -\frac{11}{3}ab^{2} získate \frac{1}{3}ab^{2}.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Skombinovaním -2a^{2}b a ba^{2} získate -a^{2}b.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\left(\frac{1}{3}ab^{2}+\frac{1}{3}a^{3}-b^{3}-ba^{2}\right)
Použite distributívny zákon na vynásobenie \frac{1}{3}a-b a b^{2}+a^{2}.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\frac{1}{3}ab^{2}-\frac{1}{3}a^{3}+b^{3}+ba^{2}
Ak chcete nájsť opačnú hodnotu k výrazu \frac{1}{3}ab^{2}+\frac{1}{3}a^{3}-b^{3}-ba^{2}, nájdite opačnú hodnotu jednotlivých členov.
\frac{1}{3}a^{3}-a^{2}b-\frac{8}{3}b^{3}-\frac{1}{3}a^{3}+b^{3}+ba^{2}
Skombinovaním \frac{1}{3}ab^{2} a -\frac{1}{3}ab^{2} získate 0.
-a^{2}b-\frac{8}{3}b^{3}+b^{3}+ba^{2}
Skombinovaním \frac{1}{3}a^{3} a -\frac{1}{3}a^{3} získate 0.
-a^{2}b-\frac{5}{3}b^{3}+ba^{2}
Skombinovaním -\frac{8}{3}b^{3} a b^{3} získate -\frac{5}{3}b^{3}.
-\frac{5}{3}b^{3}
Skombinovaním -a^{2}b a ba^{2} získate 0.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a-2\right)^{2}\left(a+2\right)^{2}+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Na rozloženie výrazu \left(a-2b\right)^{3} použite binomickú vetu \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a^{2}-4a+4\right)\left(a+2\right)^{2}+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Na rozloženie výrazu \left(a-2\right)^{2} použite binomickú vetu \left(p-q\right)^{2}=p^{2}-2pq+q^{2}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a^{2}-4a+4\right)\left(a^{2}+4a+4\right)+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Na rozloženie výrazu \left(a+2\right)^{2} použite binomickú vetu \left(p+q\right)^{2}=p^{2}+2pq+q^{2}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-8a^{2}+16+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Použite distributívny zákon na vynásobenie výrazov a^{2}-4a+4 a a^{2}+4a+4 a zlúčenie podobných členov.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Skombinovaním -8a^{2} a 4a^{2} získate -4a^{2}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(4-4a^{2}+\left(a^{2}\right)^{2}\right)\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Na rozloženie výrazu \left(2-a^{2}\right)^{2} použite binomickú vetu \left(p-q\right)^{2}=p^{2}-2pq+q^{2}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(4-4a^{2}+a^{4}\right)\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Ak chcete umocniť už umocnené číslo, vynásobte mocnitele. Vynásobením čísel 2 a 2 dostanete 4.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-4+4a^{2}-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Ak chcete nájsť opačnú hodnotu k výrazu 4-4a^{2}+a^{4}, nájdite opačnú hodnotu jednotlivých členov.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+12+4a^{2}-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Odčítajte 4 z 16 a dostanete 12.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}+12-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Skombinovaním -4a^{2} a 4a^{2} získate 0.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\times 12-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Skombinovaním a^{4} a -a^{4} získate 0.
\frac{1}{3}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Vynásobením \frac{1}{36} a 12 získate \frac{1}{3}.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Použite distributívny zákon na vynásobenie \frac{1}{3} a a^{3}-6a^{2}b+12ab^{2}-8b^{3}.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-\left(\frac{11}{3}ab^{2}-ba^{2}\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Použite distributívny zákon na vynásobenie ab a \frac{11}{3}b-a.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-\frac{11}{3}ab^{2}+ba^{2}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Ak chcete nájsť opačnú hodnotu k výrazu \frac{11}{3}ab^{2}-ba^{2}, nájdite opačnú hodnotu jednotlivých členov.
\frac{1}{3}a^{3}-2a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}+ba^{2}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Skombinovaním 4ab^{2} a -\frac{11}{3}ab^{2} získate \frac{1}{3}ab^{2}.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Skombinovaním -2a^{2}b a ba^{2} získate -a^{2}b.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\left(\frac{1}{3}ab^{2}+\frac{1}{3}a^{3}-b^{3}-ba^{2}\right)
Použite distributívny zákon na vynásobenie \frac{1}{3}a-b a b^{2}+a^{2}.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\frac{1}{3}ab^{2}-\frac{1}{3}a^{3}+b^{3}+ba^{2}
Ak chcete nájsť opačnú hodnotu k výrazu \frac{1}{3}ab^{2}+\frac{1}{3}a^{3}-b^{3}-ba^{2}, nájdite opačnú hodnotu jednotlivých členov.
\frac{1}{3}a^{3}-a^{2}b-\frac{8}{3}b^{3}-\frac{1}{3}a^{3}+b^{3}+ba^{2}
Skombinovaním \frac{1}{3}ab^{2} a -\frac{1}{3}ab^{2} získate 0.
-a^{2}b-\frac{8}{3}b^{3}+b^{3}+ba^{2}
Skombinovaním \frac{1}{3}a^{3} a -\frac{1}{3}a^{3} získate 0.
-a^{2}b-\frac{5}{3}b^{3}+ba^{2}
Skombinovaním -\frac{8}{3}b^{3} a b^{3} získate -\frac{5}{3}b^{3}.
-\frac{5}{3}b^{3}
Skombinovaním -a^{2}b a ba^{2} získate 0.