Решение для x
\left\{\begin{matrix}x\in \begin{bmatrix}\text{Indeterminate},-\frac{10\left(y-1600\right)}{y_{16}}\end{bmatrix}\text{, }&y_{16}>0\text{ and }\text{Indeterminate}\leq 0\\x\leq -\frac{10\left(y-1600\right)}{y_{16}}\text{, }&y_{16}>0\\x\in \mathrm{R}\text{, }&y\leq 1600\text{ and }y_{16}=0\\x=-\frac{10\left(y-1600\right)}{y_{16}}\text{, }&y\leq 1600\text{ or }y_{16}\neq 0\\x\geq -\frac{10\left(y-1600\right)}{y_{16}}\text{, }&y_{16}<0\\x\geq \text{Indeterminate}\text{, }&\left(\text{Indeterminate}>-\frac{10y-16000}{y_{16}}\text{ and }y_{16}<0\right)\text{ or }\left(y\leq 1600\text{ and }y_{16}\leq 0\right)\end{matrix}\right,
Решение для y_16
\left\{\begin{matrix}y_{16}\in \begin{bmatrix}\text{Indeterminate},-\frac{10\left(y-1600\right)}{x}\end{bmatrix}\text{, }&x>0\text{ and }\text{Indeterminate}\leq 0\\y_{16}\leq -\frac{10\left(y-1600\right)}{x}\text{, }&x>0\\y_{16}\in \mathrm{R}\text{, }&y\leq 1600\text{ and }x=0\\y_{16}=-\frac{10\left(y-1600\right)}{x}\text{, }&y\leq 1600\text{ or }x\neq 0\\y_{16}\geq -\frac{10\left(y-1600\right)}{x}\text{, }&x<0\\y_{16}\geq \text{Indeterminate}\text{, }&\left(\text{Indeterminate}>-\frac{10y-16000}{x}\text{ and }x<0\right)\text{ or }\left(y\leq 1600\text{ and }x\leq 0\right)\end{matrix}\right,
График
Викторина
Algebra
y 16 x + 10 y \leq 16000
Поделиться
Скопировано в буфер обмена
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}