Найдите x
x=-200
x=136
График
Поделиться
Скопировано в буфер обмена
x^{2}=27200-64x
Чтобы умножить 64 на 425-x, используйте свойство дистрибутивности.
x^{2}-27200=-64x
Вычтите 27200 из обеих частей уравнения.
x^{2}-27200+64x=0
Прибавьте 64x к обеим частям.
x^{2}+64x-27200=0
Приведите многочлен к стандартному виду. Разместите члены, начиная с члена с наибольшей степенью и заканчивая членом с наименьшей степенью.
a+b=64 ab=-27200
Чтобы решить уравнение, фактор x^{2}+64x-27200 с помощью формулы x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Чтобы найти a и b, настройте систему на ее устранение.
-1,27200 -2,13600 -4,6800 -5,5440 -8,3400 -10,2720 -16,1700 -17,1600 -20,1360 -25,1088 -32,850 -34,800 -40,680 -50,544 -64,425 -68,400 -80,340 -85,320 -100,272 -136,200 -160,170
Так как ab является отрицательным, a и b имеют противоположные знаки. Поскольку результат выражения a+b положительный, положительное число имеет больше абсолютное значение, чем отрицательное. Перечислите все такие пары целых -27200.
-1+27200=27199 -2+13600=13598 -4+6800=6796 -5+5440=5435 -8+3400=3392 -10+2720=2710 -16+1700=1684 -17+1600=1583 -20+1360=1340 -25+1088=1063 -32+850=818 -34+800=766 -40+680=640 -50+544=494 -64+425=361 -68+400=332 -80+340=260 -85+320=235 -100+272=172 -136+200=64 -160+170=10
Вычислите сумму для каждой пары.
a=-136 b=200
Решение — это пара значений, сумма которых равна 64.
\left(x-136\right)\left(x+200\right)
Перезапишите разложенное на множители выражение \left(x+a\right)\left(x+b\right) с использованием полученных значений.
x=136 x=-200
Чтобы найти решения для уравнений, решите x-136=0 и x+200=0у.
x^{2}=27200-64x
Чтобы умножить 64 на 425-x, используйте свойство дистрибутивности.
x^{2}-27200=-64x
Вычтите 27200 из обеих частей уравнения.
x^{2}-27200+64x=0
Прибавьте 64x к обеим частям.
x^{2}+64x-27200=0
Приведите многочлен к стандартному виду. Разместите члены, начиная с члена с наибольшей степенью и заканчивая членом с наименьшей степенью.
a+b=64 ab=1\left(-27200\right)=-27200
Чтобы решить уравнение, разложите левую сторону на множители путем группировки. Сначала левую сторону необходимо перезаписать в следующем виде: x^{2}+ax+bx-27200. Чтобы найти a и b, настройте систему на ее устранение.
-1,27200 -2,13600 -4,6800 -5,5440 -8,3400 -10,2720 -16,1700 -17,1600 -20,1360 -25,1088 -32,850 -34,800 -40,680 -50,544 -64,425 -68,400 -80,340 -85,320 -100,272 -136,200 -160,170
Так как ab является отрицательным, a и b имеют противоположные знаки. Поскольку результат выражения a+b положительный, положительное число имеет больше абсолютное значение, чем отрицательное. Перечислите все такие пары целых -27200.
-1+27200=27199 -2+13600=13598 -4+6800=6796 -5+5440=5435 -8+3400=3392 -10+2720=2710 -16+1700=1684 -17+1600=1583 -20+1360=1340 -25+1088=1063 -32+850=818 -34+800=766 -40+680=640 -50+544=494 -64+425=361 -68+400=332 -80+340=260 -85+320=235 -100+272=172 -136+200=64 -160+170=10
Вычислите сумму для каждой пары.
a=-136 b=200
Решение — это пара значений, сумма которых равна 64.
\left(x^{2}-136x\right)+\left(200x-27200\right)
Перепишите x^{2}+64x-27200 как \left(x^{2}-136x\right)+\left(200x-27200\right).
x\left(x-136\right)+200\left(x-136\right)
Разложите x в первом и 200 в второй группе.
\left(x-136\right)\left(x+200\right)
Вынесите за скобки общий член x-136, используя свойство дистрибутивности.
x=136 x=-200
Чтобы найти решения для уравнений, решите x-136=0 и x+200=0у.
x^{2}=27200-64x
Чтобы умножить 64 на 425-x, используйте свойство дистрибутивности.
x^{2}-27200=-64x
Вычтите 27200 из обеих частей уравнения.
x^{2}-27200+64x=0
Прибавьте 64x к обеим частям.
x^{2}+64x-27200=0
Все уравнения вида ax^{2}+bx+c=0 можно решить с помощью формулы корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Эта формула дает два решения: одно, когда для ± используется сложение, а второе — когда вычитание.
x=\frac{-64±\sqrt{64^{2}-4\left(-27200\right)}}{2}
Данное уравнение имеет стандартный вид ax^{2}+bx+c=0. Подставьте 1 вместо a, 64 вместо b и -27200 вместо c в формуле корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-64±\sqrt{4096-4\left(-27200\right)}}{2}
Возведите 64 в квадрат.
x=\frac{-64±\sqrt{4096+108800}}{2}
Умножьте -4 на -27200.
x=\frac{-64±\sqrt{112896}}{2}
Прибавьте 4096 к 108800.
x=\frac{-64±336}{2}
Извлеките квадратный корень из 112896.
x=\frac{272}{2}
Решите уравнение x=\frac{-64±336}{2} при условии, что ± — плюс. Прибавьте -64 к 336.
x=136
Разделите 272 на 2.
x=-\frac{400}{2}
Решите уравнение x=\frac{-64±336}{2} при условии, что ± — минус. Вычтите 336 из -64.
x=-200
Разделите -400 на 2.
x=136 x=-200
Уравнение решено.
x^{2}=27200-64x
Чтобы умножить 64 на 425-x, используйте свойство дистрибутивности.
x^{2}+64x=27200
Прибавьте 64x к обеим частям.
x^{2}+64x+32^{2}=27200+32^{2}
Деление 64, коэффициент x термина, 2 для получения 32. Затем добавьте квадрат 32 к обеим частям уравнения. Этот шаг поворачивается в левой части уравнения до идеального квадрата.
x^{2}+64x+1024=27200+1024
Возведите 32 в квадрат.
x^{2}+64x+1024=28224
Прибавьте 27200 к 1024.
\left(x+32\right)^{2}=28224
Коэффициент x^{2}+64x+1024. Как правило, если x^{2}+bx+c является идеальным квадратом, его всегда можно разложить как \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+32\right)^{2}}=\sqrt{28224}
Извлеките квадратный корень из обеих частей уравнения.
x+32=168 x+32=-168
Упростите.
x=136 x=-200
Вычтите 32 из обеих частей уравнения.
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}