Перейти к основному содержанию
Найдите r
Tick mark Image

Подобные задачи из результатов поиска в Интернете

Поделиться

r^{2}-r-36=4r
Вычтите 36 из обеих частей уравнения.
r^{2}-r-36-4r=0
Вычтите 4r из обеих частей уравнения.
r^{2}-5r-36=0
Объедините -r и -4r, чтобы получить -5r.
a+b=-5 ab=-36
Чтобы решить уравнение, фактор r^{2}-5r-36 с помощью формулы r^{2}+\left(a+b\right)r+ab=\left(r+a\right)\left(r+b\right). Чтобы найти a и b, настройте систему на ее устранение.
1,-36 2,-18 3,-12 4,-9 6,-6
Так как ab является отрицательным, a и b имеют противоположные знаки. Поскольку результат выражения a+b отрицательный, отрицательное число имеет большее абсолютное значение, чем положительное. Перечислите все такие пары целых -36.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
Вычислите сумму для каждой пары.
a=-9 b=4
Решение — это пара значений, сумма которых равна -5.
\left(r-9\right)\left(r+4\right)
Перезапишите разложенное на множители выражение \left(r+a\right)\left(r+b\right) с использованием полученных значений.
r=9 r=-4
Чтобы найти решения для уравнений, решите r-9=0 и r+4=0у.
r^{2}-r-36=4r
Вычтите 36 из обеих частей уравнения.
r^{2}-r-36-4r=0
Вычтите 4r из обеих частей уравнения.
r^{2}-5r-36=0
Объедините -r и -4r, чтобы получить -5r.
a+b=-5 ab=1\left(-36\right)=-36
Чтобы решить уравнение, разложите левую сторону на множители путем группировки. Сначала левую сторону необходимо перезаписать в следующем виде: r^{2}+ar+br-36. Чтобы найти a и b, настройте систему на ее устранение.
1,-36 2,-18 3,-12 4,-9 6,-6
Так как ab является отрицательным, a и b имеют противоположные знаки. Поскольку результат выражения a+b отрицательный, отрицательное число имеет большее абсолютное значение, чем положительное. Перечислите все такие пары целых -36.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
Вычислите сумму для каждой пары.
a=-9 b=4
Решение — это пара значений, сумма которых равна -5.
\left(r^{2}-9r\right)+\left(4r-36\right)
Перепишите r^{2}-5r-36 как \left(r^{2}-9r\right)+\left(4r-36\right).
r\left(r-9\right)+4\left(r-9\right)
Разложите r в первом и 4 в второй группе.
\left(r-9\right)\left(r+4\right)
Вынесите за скобки общий член r-9, используя свойство дистрибутивности.
r=9 r=-4
Чтобы найти решения для уравнений, решите r-9=0 и r+4=0у.
r^{2}-r-36=4r
Вычтите 36 из обеих частей уравнения.
r^{2}-r-36-4r=0
Вычтите 4r из обеих частей уравнения.
r^{2}-5r-36=0
Объедините -r и -4r, чтобы получить -5r.
r=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-36\right)}}{2}
Данное уравнение имеет стандартный вид ax^{2}+bx+c=0. Подставьте 1 вместо a, -5 вместо b и -36 вместо c в формуле корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-\left(-5\right)±\sqrt{25-4\left(-36\right)}}{2}
Возведите -5 в квадрат.
r=\frac{-\left(-5\right)±\sqrt{25+144}}{2}
Умножьте -4 на -36.
r=\frac{-\left(-5\right)±\sqrt{169}}{2}
Прибавьте 25 к 144.
r=\frac{-\left(-5\right)±13}{2}
Извлеките квадратный корень из 169.
r=\frac{5±13}{2}
Число, противоположное -5, равно 5.
r=\frac{18}{2}
Решите уравнение r=\frac{5±13}{2} при условии, что ± — плюс. Прибавьте 5 к 13.
r=9
Разделите 18 на 2.
r=-\frac{8}{2}
Решите уравнение r=\frac{5±13}{2} при условии, что ± — минус. Вычтите 13 из 5.
r=-4
Разделите -8 на 2.
r=9 r=-4
Уравнение решено.
r^{2}-r-4r=36
Вычтите 4r из обеих частей уравнения.
r^{2}-5r=36
Объедините -r и -4r, чтобы получить -5r.
r^{2}-5r+\left(-\frac{5}{2}\right)^{2}=36+\left(-\frac{5}{2}\right)^{2}
Деление -5, коэффициент x термина, 2 для получения -\frac{5}{2}. Затем добавьте квадрат -\frac{5}{2} к обеим частям уравнения. Этот шаг поворачивается в левой части уравнения до идеального квадрата.
r^{2}-5r+\frac{25}{4}=36+\frac{25}{4}
Возведите -\frac{5}{2} в квадрат путем возведения числителя и знаменателя дроби в квадрат.
r^{2}-5r+\frac{25}{4}=\frac{169}{4}
Прибавьте 36 к \frac{25}{4}.
\left(r-\frac{5}{2}\right)^{2}=\frac{169}{4}
Коэффициент r^{2}-5r+\frac{25}{4}. Как правило, если x^{2}+bx+c является идеальным квадратом, его всегда можно разложить как \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r-\frac{5}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Извлеките квадратный корень из обеих частей уравнения.
r-\frac{5}{2}=\frac{13}{2} r-\frac{5}{2}=-\frac{13}{2}
Упростите.
r=9 r=-4
Прибавьте \frac{5}{2} к обеим частям уравнения.